1、教学目标 1. 借助数轴,使学生了解相反数的概念 2. 会求一个有理数的相反数 3. 激发学生学习数学的兴趣. 教学重点与难点 重点: 理解相反数的意义 难点: 理解相反数的意义 教学设计 提问 1、数轴的三要素是什么? 2、填空: 数轴上与原点的距离是2的点有 个,这些点表示的数是 ;与原点的距离是5的点有 个,这些点表示的数是 。 新课 相反数的概念: 只有符号不同的两个数,我们称它们互为相反数,零的相反数是零。 概念的理解: (1) 互为相反数的两个数分别在原点的两旁,且到原点的距离相等。 (2) 一般地,数a的相反数是 , 不一定是负数。 (3) 在一个数的前面添上“-”号,就表示这个
2、数的相反数,如:-3是3的相反数,-a是a的相反数,因此,当a是负数时,-a是一个正数 -(-3)是(-3)的相反数,所以-(-3)=3,于是 (4) 互为相反数的两个数之和是0 即如果x与y互为相反数,那么x+y=0;反之,若x+y=0, 则x与y互为相反数 (5) 相反数是指两个数之间的一种特殊的关系,而不是指一个种类。如:“-3是一个相反数”这句话是不对的。 例1 求下列各数的相反数: (1)-5 (2) (3)0 (4) (5)-2b (6) a-b (7) a+2 例2 判断: (1)-2是相反数 (2)-3和+3都是相反数 (3)-3是3的相反数 (4)-3与+3互为相反数 (5)+3是-3的相反数 (6)一个数的相反数不可能是它本身 例3 化简下列各数中的符号: (1) (2)-(+5) (3) (4) 例4 填空: (1)a-4的相反数是 ,3-x的相反数是 。 (2) 是 的相反数。 (3)如果-a=-9,那么-a的相反数是 。 例5 填空: (1)若-(a-5)是负数,则a-5 0. (2) 若 是负数,则x+y 0. 例6 已知a、b在数轴上的位置如图所示。 (1) 在数轴上作出它们的相反数; (2) 用“”按从小到大的顺序将这四个数连接起来。 例7 如果a-5与a互为相反数,求a. 练习:教材14页 小节:相反数的概念及注意事项 作业:18页第3题