1、济宁市人教版七年级下学期期末压轴难题数学试题题一、选择题14的算术平方根是()A2B4CD2下列运动属于平移的是( )A汽车在平直的马路上行驶B吹肥皂泡时小气泡变成大气泡C铅球被抛出D红旗随风飘扬3下列各点中,位于第二象限的是()A(5,2)B(2,5)C(5,5)D(3,2)4下列说法中正确的个数为( )过一点有且只有一条直线与已知直线垂直;两条直线被第三条直线所截,同位角相等;经过两点有一条直线,并且只有一条直线;在同一平面内,不重合的两条直线不是平行就是相交A个B个C个D个5如图,将一条对边互相平行的纸带进行两次折叠,折痕分别为AB,CD,若,若,则的度数是( )ABCD6若,则( )A
2、632.9B293.8C2938D63297如图,直线,三角板的直角顶点在直线上,则( )A26B54C64D668如图,按此规律,点的坐标为( )ABCD二、填空题99的算术平方根是 10若点与关于轴对称,则_11如图,直线与直线交于点,、是与的角平分线,则_度12如图所示,已知ABCD,EF平分CEG,180,则2的度数为_13如图,将一条对边互相平行的长方形纸带进行两次折叠,折痕分别为、,若,且,则_14下列命题中,属于真命题的有_(填序号):互补的角是邻补角;无理数是无限不循环小数;同位角相等;两条平行线的同旁内角的角平分线互相垂直;如果,那么15如图,点A(1,0),B(2,0),C
3、是y轴上一点,且三角形ABC的面积为2,则点C的坐标为_16在平面直角坐标系中,对于点P(x,y),我们把点P(y1,x1)叫做点P的幸运点已知点A1的幸运点为A2,点A2的幸运点为A3,点A3的幸运点为A4,这样依次得到点A1,A2,A3,An若点A1的坐标为(3,1),则点A2020的坐标为_三、解答题17(1)已知,求x的值;(2)计算:.18求下列各式中x的值(1)x2810;(2)2x2160;(3)(x2)32719如图所示,已知BDCD于D,EFCD于F,A80,ABC100求证:12证明:BDCD,EFCD(已知)BDCEFC90(垂直的定义) (同位角相等,两直线平行)23
4、A80,ABC100(已知)A+ABC180AD/BC (两直线平行,内错角相等)12 20如图,在平面直角坐标系中,已知P(a,b)是ABC的边AC上一点,ABC经平移后点P的对应点为P1(a+6,b+2)(1)请画出上述平移后的A1B1C1,并写出点A1,C1的坐标;(2)写出平移的过程;(3)求出以A,C,A1,C1为顶点的四边形的面积21已知是的整数部分,是的小数部分,求代数式的平方根二十二、解答题22如图,用两个边长为15的小正方形拼成一个大的正方形,(1)求大正方形的边长?(2)若沿此大正方形边的方向剪出一个长方形,能否使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2?二
5、十三、解答题23(1)如图,若B+D=E,则直线AB与CD有什么位置关系?请证明(不需要注明理由)(2)如图中,AB/CD,又能得出什么结论?请直接写出结论 (3)如图,已知AB/CD,则1+2+n-1+n的度数为 24已知,将一副三角板中的两块直角三角板如图1放置,(1)若三角板如图1摆放时,则_,_(2)现固定的位置不变,将沿方向平移至点E正好落在上,如图2所示,与交于点G,作和的角平分线交于点H,求的度数;(3)现固定,将绕点A顺时针旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出的度数25(1)如图1,BAD的平分线AE与BCD的平分线CE交于点E,ABCD,ADC=5
6、0,ABC=40,求AEC的度数;(2)如图2,BAD的平分线AE与BCD的平分线CE交于点E,ADC=,ABC=,求AEC的度数;(3)如图3,PQMN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由26如图,直线m与直线n互相垂直,垂足为O、A、B两点同时从点O出发,点A沿直线m向左运动,点B沿直线n向上运动(1)若BAO和ABO的平分线相交于点Q,在点A,B的运动过程中,AQB的大小是否会发生变化?若不发生变化,请求出其值,若发生变化,请说明理由(2)若AP是BAO的邻补角的平分线,BP是ABO
7、的邻补角的平分线,AP、BP相交于点P,AQ的延长线交PB的延长线于点C,在点A,B的运动过程中,P和C的大小是否会发生变化?若不发生变化,请求出P和C的度数;若发生变化,请说明理由【参考答案】一、选择题1A解析:A【分析】依据算术平方根的定义解答即可【详解】4的算术平方根是2,故选:A【点睛】本题考查的是求一个数的算术平方根的问题,解题关键是明确算术平方根的定义2A【分析】根据平移的定义,对选项进行一一分析,排除错误答案【详解】解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合;B、吹肥皂泡时小气泡变成大气泡,不属于平移解析:A【分析】根据平移的定义,对选项进行一一
8、分析,排除错误答案【详解】解:A、汽车在笔直公路上运动沿直线运动,符合平移定义,属于平移,故A选项符合;B、吹肥皂泡时小气泡变成大气泡,不属于平移,故B选项不符合;C、铅球被抛出是旋转与平移组合,故C选项不符合;D、随风摆动的红旗,不属于平移,故D选项不符合故选:A【点睛】此题主要考查了平移定义,平移是指图形的平行移动,平移时图形中所有点移动的方向一致,并且移动的距离相等3D【分析】依据位于第二象限的点的横坐标为负,纵坐标为正,即可得到结论【详解】解:位于第二象限的点的横坐标为负,纵坐标为正,位于第二象限的是(3,2),故选:B【点睛】此题考查点的坐标,解题关键在于掌握坐标系中各象限坐标的特征
9、4B【分析】根据题目中的说法,可以判断各个选项中的说法是否正确,本题得以解决【详解】解:平面内,过一点有且只有一条直线与已知直线垂直,故错误;两条平行直线被第三条直线所截,同位角相等,如果两条直线不平行,被第三条直线所截,同位角不相等,故错误;经过两点有一条直线,并且只有一条直线,故正确;在同一平面内,不重合的两条直线不是平行就是相交,故正确故选:B【点睛】本题考查垂线、平行线的性质,解答本题的关键是明确题意题意,可以判断各个选项中的说法是否正确5D【分析】由折叠的性质可知1=BAG,2BDC+2=180,根据BEAG,得到CFB=CAG=21,从而根据平行线的性质得到CDB=21,则2=18
10、0-41.【详解】解:由题意得:AGBECD,CFBD,CFB=CAG,CFB+DBF=180,DBF+CDB=180CFB=CDBCAG=CDB由折叠的性质得1=BAG,2BDC+2=180CAG=CDB=1+BAG=22=180-2BDC=180-4故选D.【点睛】本题主要考查了平行线的性质与折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.6B【分析】把,再利用立方根的性质化简即可得到答案.【详解】解: , 故选:【点睛】本题考查的是立方根的含义,立方根的性质,熟练立方根的含义与性质是解题的关键.7C【分析】根据平角等于180列式计算得到3,根据两直线平行,同位角相等可得3=2【详
11、解】解:如图,1=26,ACB=90,3=90-1=64,直线ab,2=3=64,故选:C【点睛】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键8C【分析】经观察分析所有点,除A1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A2022在第一象限;第一象解析:C【分析】经观察分析所有点,除A1外,其它所有点按一定的规律分布在四个象限,且每个象限的点满足:角标4=循环次数+余数,余数0,1,2,3确定相应的象限,由此确定点A2022在第一象限;第一象限的点A2(1,1),A6(2,2),A10
12、(3,3)观察易得到点的坐标=【详解】解:由题可知第一象限的点:A2,A6,A10角标除以4余数为2;第二象限的点:A3,A7,A11角标除以4余数为3;第三象限的点:A4,A8,A12角标除以4余数为0;第四象限的点:A5,A9,A13角标除以4余数为1;由上规律可知:20224=5052点A2022在第一象限观察图形,可知:点A2的坐标为(1,1),点A6的坐标为(2,2),点A10的坐标为(3,3),第一象限点的横纵坐标数字隐含规律:点的坐标=(n为角标)点A4n-2的坐标为(,)(n为正整数),点A2022的坐标为(506,506)故选C【点睛】本题考查了点的坐标正方形为单位格点变化规
13、律,反应出点的坐标变化从特殊到一般再到特殊规律计算方法,同时也体现出第一象限点的横纵坐标数字隐含规律:点的坐标=(n为角标)求解二、填空题9【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】,9算术平方根为3故答案为3【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.解析:【分析】根据一个正数的算术平方根就是其正的平方根即可得出.【详解】,9算术平方根为3故答案为3【点睛】本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.100【分析】根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.【详解】点与关于轴对称,故答案
14、为:0【点睛】本题主要考查了平面直角坐标系内点解析:0【分析】根据平面直角坐标系中关于轴对称的两点,横坐标互为相反数,纵坐标相等的特点进行解题即可.【详解】点与关于轴对称,故答案为:0【点睛】本题主要考查了平面直角坐标系内点的轴对称,熟练掌握相关点的轴对称特征是解决本题的关键1160【分析】由角平分线的定义可求出AOE=EOC=COB=60,再根据对顶角相等即可求出AOD的度数【详解】OE平分AOC,AOE=EOC,OC平分BOE,解析:60【分析】由角平分线的定义可求出AOE=EOC=COB=60,再根据对顶角相等即可求出AOD的度数【详解】OE平分AOC,AOE=EOC,OC平分BOE,E
15、OC=COBAOE=EOC=COB,AOE+EOC+COB=180COB=60,AOD=COB=60,故答案为:60【点睛】本题主要考查了角平分线的应用以及对顶角相等的性质,熟练运用角平分线的定义是解题的关键1250【分析】由角平分线的定义,结合平行线的性质,易求2的度数【详解】解:EF平分CEG,CEG2CEF,又ABCD,2CEF(1801)50,解析:50【分析】由角平分线的定义,结合平行线的性质,易求2的度数【详解】解:EF平分CEG,CEG2CEF,又ABCD,2CEF(1801)50,故答案为:50【点睛】本题主要考查了平行线的性质,解决问题的关键是利用平行线的性质确定内错角相等,
16、然后根据角平分线定义得出所求角与已知角的关系1368【分析】利用平行线的性质以及翻折不变性即可得到5=DCF=4=3=1=56,进而得出2=68【详解】解:如图,延长BC到点F,纸带对边互相平行,1=56,解析:68【分析】利用平行线的性质以及翻折不变性即可得到5=DCF=4=3=1=56,进而得出2=68【详解】解:如图,延长BC到点F,纸带对边互相平行,1=56,4=3=1=56,由折叠可得,DCF=5,CDBE,DCF=4=56,5=56,2=180-DCF-5=180-56-56=68,故答案为:68【点睛】本题考查平行线的判定和性质,解题的关键是熟练掌握:两直线平行,同位角相等;两直
17、线平行,内错角相等14【分析】根据邻补角、无理数、平行线的性质和平方根进行判断即可【详解】解:邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题;无理数是无限不循环小数,正确,是真命题;解析:【分析】根据邻补角、无理数、平行线的性质和平方根进行判断即可【详解】解:邻补角一定互补,但互补的角不一定是邻补角,故错误,是假命题;无理数是无限不循环小数,正确,是真命题;两直线平行,同位角相等,故错误,是假命题;如图所示,直线a,b被直线c所截,且a/b,直线AB平分CAE,直线CD平分ACF,AB,CD相交于点G求证:ABCD证明:a/b,CAE+ACF=180又AB平分CAE,CD平分ACF
18、,所以1=CAE,2=ACF所以1+2=CAE+ACF=(CAE+ACF)=180=90又ACG的内角和为180,AGC=180-(1+2)=180-90=90,ABCD两条平行线的同旁内角的角平分线互相垂直,正确,是真命题;如果,那么,正确,是真命题故答案为:【点睛】此题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的定义、性质定理及判定定理15(0,4)或(0,-4)【分析】设ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答【详解】解:设ABC边AB上的高为h,A(1,0),解析:(0,4)或(0
19、,-4)【分析】设ABC边AB上的高为h,利用三角形的面积列式求出h,再分点C在y轴正半轴与负半轴两种情况解答【详解】解:设ABC边AB上的高为h,A(1,0),B(2,0),AB=2-1=1,ABC的面积=1h=2,解得h=4,点C在y轴正半轴时,点C为(0,4),点C在y轴负半轴时,点C为(0,-4),所以,点C的坐标为(0,4)或(0,-4)故答案为:(0,4)或(0,-4)【点睛】本题考查了三角形的面积,坐标与图形性质,求出AB边上的高的长度是解题的关键16(0,-2)【分析】根据伴随点的定义,罗列出部分点A的坐标,根据点A的变化找出规律“A4n+1(3,1),A4n+2(0,4),A
20、4n+3(-3,1),A4n+4(0,-2)(n为自然数)”,根解析:(0,-2)【分析】根据伴随点的定义,罗列出部分点A的坐标,根据点A的变化找出规律“A4n+1(3,1),A4n+2(0,4),A4n+3(-3,1),A4n+4(0,-2)(n为自然数)”,根据此规律即可解决问题【详解】解:观察,发现规律:A1(3,1),A2(0,4),A3(-3,1),A4(0,-2),A5(3,1),A4n+1(3,1),A4n+2(0,4),A4n+3(-3,1),A4n+4(0,-2)(n为自然数)2020=4504+4,点A2020的坐标为(0,-2)故答案为:(0,-2)【点睛】本题考查了规律
21、型中的点的坐标,解题的关键是发现规律“A4n+1(3,1),A4n+2(0,4),A4n+3(-3,1),A4n+4(0,-2)(n为自然数)”三、解答题17(1)x=3或x=-1;(2)【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:; x=3或x=-1 (2)原式= ,【解析:(1)x=3或x=-1;(2)【分析】(1)根据平方根的性质求解;(2)根据绝对值、算术平方根和立方根的性质求解.【详解】(1)解:; x=3或x=-1 (2)原式= ,【点睛】本题考查平方根、算术平方根和立方根的运算,熟练掌握运算法则是解题关键.18(1)x9;
22、(2);(3)x1【分析】(1)式子整理后,利用平方根的定义求解即可;(2)式子整理后,利用平方根的定义求解即可;(3)利用立方根的定义求解即可【详解】解:(1)解析:(1)x9;(2);(3)x1【分析】(1)式子整理后,利用平方根的定义求解即可;(2)式子整理后,利用平方根的定义求解即可;(3)利用立方根的定义求解即可【详解】解:(1)x2810,x281,x9;(2)2x2160,2x216,x28,;(3)(x2)327,x23,x23,x1【点睛】本题主要考查了平方根与立方根的定义:求a的立方根,实际上就是求哪个数的立方等于a,熟记相关定义是解答本题的关键19BDEF;两直线平行,同
23、位角相等;同旁内角互补,两直线平行;13;等量代换【分析】根据垂直推出BDEF,根据平行线的性质即可求出23,根据已知求出ABCA180,根据解析:BDEF;两直线平行,同位角相等;同旁内角互补,两直线平行;13;等量代换【分析】根据垂直推出BDEF,根据平行线的性质即可求出23,根据已知求出ABCA180,根据平行线的判定得出ADBC,再根据平行线的性质求出31,即可得到12【详解】证明:BDCD,EFCD(已知),BDCEFC90(垂直的定义),BDEF(同位角相等,两直线平行),23(两直线平行,同位角相等),A80,ABC100(已知),A+ABC180,ADBC(同旁内角互补,两直线
24、平行),13(两直线平行,内错角相等),12(等量代换)故答案为:BDEF;两直线平行,同位角相等;同旁内角互补,两直线平行;13;等量代换【点睛】本题考查了平行线的性质和判定的应用,能熟练地运用平行线的判定和性质定理进行推理是解此题的关键20(1)图见详解;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A,C,A1,C1为顶点的四边形的面积为14【分析】(1)根据点P的对应点P1(a+6,b+2)可分别解析:(1)图见详解;(2)平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)以A,C,A1,C1为顶点的四边形的面积为14【分析】(1)根据点P的对应
25、点P1(a+6,b+2)可分别得出A、B、C的对应点A1,B1,C1的坐标,然后连接即可得出图象;(2)由(1)可直接进行求解;(3)由(1)的图象可直接利用割补法进行求解面积【详解】解:(1)由点P的对应点P1(a+6,b+2)可得如图所示图象:由图象可得;(2)由图象可得:平移过程为先向右平移6个单位长度,再向上平移2个单位长度;(3)连接,如图所示:点,点在同一条直线上,且与x轴平行,【点睛】本题主要考查平移的性质及坐标与图形,熟练掌握坐标的平移是解题的关键21【分析】根据可得,即可得到的整数部分是3,小数部分是,即可求解【详解】解:,的整数部分是3,则,的小数部分是,则,9的平方根为【
26、点睛】本题考查实数的估算、实数解析:【分析】根据可得,即可得到的整数部分是3,小数部分是,即可求解【详解】解:,的整数部分是3,则,的小数部分是,则,9的平方根为【点睛】本题考查实数的估算、实数的运算、平方根的定义,掌握实数估算的方法是解题的关键二十二、解答题22(1)30;(2)不能.【解析】【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可【详解】解:(1)大正方形的面积是: 大正解析:(1)30;(2)不能.【解析】【分析】(1)根据已知正方形的面积求出大正方形的面积,即可求出边长;(2)先求出长方形的边长,再判断即可【详解】解:(1
27、)大正方形的面积是: 大正方形的边长是: 30;(2)设长方形纸片的长为4xcm,宽为3xcm,则4x3x720,解得:x ,4x 30,所以沿此大正方形边的方向剪出一个长方形,不能使剪出的长方形纸片的长宽之比为4:3,且面积为720cm2故答案为(1)30;(2)不能.【点睛】本题考查算术平方根,解题的关键是能根据题意列出算式二十三、解答题23(1)AB/CD,证明见解析;(2)E1+E2+En=B+F1+F2+Fn-1+D ;(3)(n-1)180【分析】(1)过点E作EF/AB,利用平行线的性质则可得出解析:(1)AB/CD,证明见解析;(2)E1+E2+En=B+F1+F2+Fn-1+
28、D ;(3)(n-1)180【分析】(1)过点E作EF/AB,利用平行线的性质则可得出B=BEF,再由已知及平行线的判定即可得出ABCD;(2)如图,过点E作EMAB,过点F作FNAB,过点G作GHAB,根据探究(1)的证明过程及方法,可推出E+G=B+F+D,则可由此得出规律,并得出E1+E2+En=B+F1+F2+Fn-1+D;(3)如图,过点M作EFAB,过点N作GHAB,则可由平行线的性质得出1+2+MNG =1802,依此即可得出此题结论【详解】解:(1)过点E作EF/AB, B=BEF BEF+FED=BED,B+FED=BED B+D=E(已知),FED=D CD/EF(内错角相
29、等,两直线平行)AB/CD (2)过点E作EMAB,过点F作FNAB,过点G作GHAB,ABCD,ABEMFNGHCD,B=BEM,MEF=EFN,NFG=FGH,HGD=D,BEF+FGD=BEM+MEF+FGH+HGD=B+EFN+NFG+D=B+EFG+D,即E+G=B+F+D由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等,E1+E2+En=B+F1+F2+Fn-1+D 故答案为:E1+E2+En=B+F1+F2+Fn-1+D(3)如图,过点M作EFAB,过点N作GHAB, APM+PME=180,EFAB,GHAB,EFGH,EMN+MNG=180,1+2+MNG =18
30、02,依次类推:1+2+n-1+n=(n-1)180故答案为:(n-1)180【点睛】本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形24(1)15;150;(2)67.5;(3)30或90或120【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当B解析:(1)15;150;(2)67.5;(3)30或90或120【分析】(1)根据平行线的性质和三角板的角的度数解答即可;(2)根据平行线的性质和角平分线的定义解答即可;(3)分当BCDE时,当BCEF时,当BCDF时,三种
31、情况进行解答即可【详解】解:(1)作EIPQ,如图,PQMN,则PQEIMN,=DEI,IEA=BAC,DEA=+BAC,= DEA -BAC=60-45=15,E、C、A三点共线,=180-DFE=180-30=150;故答案为:15;150;(2)PQMN,GEF=CAB=45,FGQ=45+30=75,GH,FH分别平分FGQ和GFA,FGH=37.5,GFH=75,FHG=180-37.5-75=67.5;(3)当BCDE时,如图1,D=C=90,ACDF,CAE=DFE=30,BAM+BAC=MAE+CAE,BAM=MAE+CAE-BAC=45+30-45=30;当BCEF时,如图2
32、,此时BAE=ABC=45,BAM=BAE+EAM=45+45=90;当BCDF时,如图3,此时,ACDE,CAN=DEG=15,BAM=MAN-CAN-BAC=180-15-45=120综上所述,BAM的度数为30或90或120【点睛】本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点25(1)E=45;(2)E=;(3)不变化,【分析】(1)由三角形内角和定理,可得D+ECD=E+EAD,B+EAB=E+
33、ECB,由角平分线的性质,可得ECD=ECB=解析:(1)E=45;(2)E=;(3)不变化,【分析】(1)由三角形内角和定理,可得D+ECD=E+EAD,B+EAB=E+ECB,由角平分线的性质,可得ECD=ECB=BCD,EAD=EAB=BAD,则可得E= (D+B),继而求得答案;(2)首先延长BC交AD于点F,由三角形外角的性质,可得BCD=B+BAD+D,又由角平分线的性质,即可求得答案(3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案【详解】解:(1)CE平分BCD,AE平分BAD ECD=ECB=BCD,EAD=EAB=BAD, D+ECD=E+EAD
34、,B+EAB=E+ECB, D+ECD+B+EAB=E+EAD+E+ECB D+B=2E, E=(D+B), ADC=50,ABC=40, AEC= (50+40)=45;(2)延长BC交AD于点F, BFD=B+BAD, BCD=BFD+D=B+BAD+D, CE平分BCD,AE平分BAD ECD=ECB=BCD,EAD=EAB=BAD, E+ECB=B+EAB, E=B+EABECB=B+BAEBCD=B+BAE(B+BAD+D)= (BD), ADC=,ABC=, 即AEC=(3)的值不发生变化,理由如下:如图,记与交于,与交于, , 得: AD平分BAC, 【点睛】此题考查了三角形内角
35、和定理、三角形外角的性质以及角平分线的定义此题难度较大,注意掌握整体思想与数形结合思想的应用26(1)AQB的大小不发生变化,AQB135;(2)P和C的大小不变,P=45,C=45.【分析】第(1)题因垂直可求出ABO与BAO的和,由角平分线和角的和差可求出BA解析:(1)AQB的大小不发生变化,AQB135;(2)P和C的大小不变,P=45,C=45.【分析】第(1)题因垂直可求出ABO与BAO的和,由角平分线和角的和差可求出BAQ与ABQ的和,最后在ABQ中,根据三角形的内角各定理可求AQB的大小第(2)题求P的大小,用邻补角、角平分线、平角、直角和三角形内角和定理等知识求解【详解】解:
36、(1)AQB的大小不发生变化,如图1所示,其原因如下:mn,AOB90,在ABO中,AOB+ABO+BAO180,ABO+BAO90,又AQ、BQ分别是BAO和ABO的角平分线,BAQBAC,ABQABO,BAQ+ABQ (ABO+BAO)又在ABQ中,BAQ+ABQ+AQB180,AQB18045135(2)如图2所示:P的大小不发生变化,其原因如下:ABF+ABO180,EAB+BAO180BAQ+ABQ90,ABF+EAB36090270,又AP、BP分别是BAE和ABP的角平分线,PABEAB,PBAABF,PAB+PBA (EAB+ABF)270135,又在PAB中,P+PAB+PBA180,P18013545C的大小不变,其原因如下:AQB135,AQB+BQC180,BQC180135,又FBOOBQ+QBA+ABP+PBF180ABQQBOABO,PBAPBFABF,PBQABQ+PBA90,又PBCPBQ+CBQ180,QBC1809090又QBC+C+BQC180,C180904545【点睛】本题考查三角形内角和定理,垂直,角平分线,平角,直角和角的和差等知识点,同时,也是一个以静求动的一个点型题目,有益于培养学生的思维几何综合题