收藏 分销(赏)

上海位育初级中学人教版七年级下学期期末压轴难题数学试题题.doc

上传人:a199****6536 文档编号:5580134 上传时间:2024-11-13 格式:DOC 页数:26 大小:607.54KB
下载 相关 举报
上海位育初级中学人教版七年级下学期期末压轴难题数学试题题.doc_第1页
第1页 / 共26页
上海位育初级中学人教版七年级下学期期末压轴难题数学试题题.doc_第2页
第2页 / 共26页
上海位育初级中学人教版七年级下学期期末压轴难题数学试题题.doc_第3页
第3页 / 共26页
上海位育初级中学人教版七年级下学期期末压轴难题数学试题题.doc_第4页
第4页 / 共26页
上海位育初级中学人教版七年级下学期期末压轴难题数学试题题.doc_第5页
第5页 / 共26页
点击查看更多>>
资源描述

1、上海位育初级中学人教版七年级下学期期末压轴难题数学试题题一、选择题1如图,与是同旁内角的是( )ABCD2如图所示的图案分别是四种汽车的车标,其中可以看作是由“基本图案”经过平移得到的是( )ABCD3在平面直角坐标系中有四个点,其中在第一象限的点是( )ABCD4下列六个命题有理数与数轴上的点一一对应两条直线被第三条直线所截,内错角相等平行于同一条直线的两条直线互相平行;同一平面内,垂直于同一条直线的两条直线互相平行;直线外一点到这条直线的垂线段叫做点到直线的距离如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是()A2个B3个C4个D5个5如图,平分,点在的延长

2、线上,连接,下列结论:;平分;其中正确的个数为( )A1个B2个C3个D4个6下列计算正确的是()A2B(3)00C(2a2b)24a4b2D2a3(2a)a37如图,在中,AEC50,平分,则的度数为( )A25B30C35D408如图,小球起始时位于(3,0)处,沿所示的方向击球,小球运动的轨迹如图所示如果小球起始时位于(1,0)处,仍按原来方向击球,小球第一次碰到球桌边时,小球的位置是(0,1),那么小球第2021次碰到球桌边时,小球的位置是( )A(3,4)B(5,4)C(7,0)D(8,1)二、填空题9已知=2.493, =7.882,则=_10已知点的坐标是,且点关于轴对称的点的坐

3、标是,则_11如图中,AD、AF分别是的角平分线和高,_12如图,BC,AD,有下列结论:ABCD;AEDF;AEBC;AMCBND其中正确的有_(只填序号)13如图,点E、点G、点F分别在AB、AD、BC上,将长方形ABCD按EF、EG翻折,线段EA的对应边EA恰好落在折痕EF上,点B的对应点B落在长方形外,BF与CD交于点H,已知BHC134,则AGE_14观察下面“品”字图形中各数字之间的规律,根据观察到的规律得出a+b的值为_15已知点位于第一象限,到轴的距离为2,到轴的距离为5,则点的坐标为_16在平面直角坐标系中,点经过某种变换后得到点,我们把点叫做点的终结点已知点的终结点为点的终

4、结点为,点的终结点为,这样依次得到,若点的坐标为,则点的坐标为_三、解答题17计算:(1) (2)18(1)已知am3,an5,求a3m2n的值(2)已知xy,xy,求下列各式的值:x2yxy2;x2y2.19完成下面的证明与解题如图,ADBC,点E是BA延长线上一点,EDCE(1)求证:BD证明:ADBC,B_(_)EDCE,ABCD(_)D_(_)BD(2)若CE平分BCD,E50,求B的度数20如图,在平面直角坐标系中,的三个顶点的坐标分别是,(1)求出的面积;(2)平移,若点的对应点的坐标为,画出平移后对应的,写出坐标21阅读下面的对话,解答问题: 事实上:小慧的表示方法有道理,因为的

5、整数部分是1,将这个数减去其整数部分,差就是小数部分又例如: ,即 , 的整数部分为2,小数部分为 请解答:(1) 的整数部分_,小数部分可表示为_ (2)已知:10-=x+y,其中x是整数,且0y1,求xy的相反数二十二、解答题22喜欢探究的亮亮同学拿出形状分别是长方形和正方形的两块纸片,其中长方形纸片的长为,宽为,且两块纸片面积相等(1)亮亮想知道正方形纸片的边长,请你帮他求出正方形纸片的边长;(结果保留根号)(2)在长方形纸片上截出两个完整的正方形纸片,面积分别为和,亮亮认为两个正方形纸片的面积之和小于长方形纸片的总面积,所以一定能截出符合要求的正方形纸片来,你同意亮亮的见解吗?为什么?

6、(参考数据:,)二十三、解答题23已知:如图,直线AB/CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN (1)点M,N分别在射线QC,QF上(不与点Q重合),当APM+QMN=90时,试判断PM与MN的位置关系,并说明理由;若PA平分EPM,MNQ=20,求EPB的度数(提示:过N点作AB的平行线)(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PMMN条件的图形,并直接写出此时APM与QMN的关系(注:此题说理时不能使用没有学过的定理)24已知两条直线l1,l2,l1l2,点A,B在直线l1上,点A在点B的左边,点

7、C,D在直线l2上,且满足(1)如图,求证:ADBC;(2)点M,N在线段CD上,点M在点N的左边且满足,且AN平分CAD;()如图,当时,求DAM的度数;()如图,当时,求ACD的度数25(1)如图1所示,ABC中,ACB的角平分线CF与EAC的角平分线AD的反向延长线交于点F;若B90则F ;若Ba,求F的度数(用a表示);(2)如图2所示,若点G是CB延长线上任意一动点,连接AG,AGB与GAB的角平分线交于点H,随着点G的运动,F+H的值是否变化?若变化,请说明理由;若不变,请求出其值26【问题探究】如图1,DFCE,PCE=,PDF=,猜想DPC与、之间有何数量关系?并说明理由;【问

8、题迁移】如图2,DFCE,点P在三角板AB边上滑动,PCE=,PDF=.(1)当点P在E、F两点之间运动时,如果=30,=40,则DPC= .(2)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),写出DPC与、之间的数量关系,并说明理由(图1) (图2)【参考答案】一、选择题1C解析:C【分析】根据同旁内角的概念:两条直线被第三条直线所截,若两个角都在两直线之间,并且在第三条直线的同旁,据此可排除选项【详解】解:与是同旁内角的是;故选C【点睛】本题主要考查同旁内角的概念,熟练掌握同旁内角的概念是解题的关键2C【分析】根据平移变换的定义可得结论【详解】解:由平移变换的定义可知

9、,选项C可以看作由“基本图案”经过平移得到的故选:C【点睛】本题考查利用平移设计图案,解题的关键是理解平移变换解析:C【分析】根据平移变换的定义可得结论【详解】解:由平移变换的定义可知,选项C可以看作由“基本图案”经过平移得到的故选:C【点睛】本题考查利用平移设计图案,解题的关键是理解平移变换的定义,属于中考基础题3A【分析】根据各象限内点的坐标特征解答即可【详解】解:在第一象限;在第二象限;在第三象限;在第四象限;故选:A【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限4C【分析】利用实数的

10、性质、平行线的性质及判定、点到直线的距离等知识分别判断后即可确定答案【详解】解:实数与数轴上的点一一对应,故原命题错误,是假命题,符合题意;两条平行直线被第三条直线所截,内错角相等,故原命题错误,是假命题,符合题意;平行于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;直线外一点到这条直线的垂线段的长度叫做点到直线的距离,故原命题错误,是假命题,符合题意;如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,故原命题错误,是假命题,符合题意,假命题有4个,故选:C【点睛】本题主要考查了命题与定理的

11、知识,解题的关键是了解实数的性质、平行线的性质及判定、点到直线的距离的定义等知识,难度不大5D【分析】结合平行线性质和平分线判断出正确,再结合平行线和平分线根据等量代换判断出正确即可【详解】解:ABCD,1=2,AC平分BAD,2=3,1=3,B=CDA,1=4,3=4,BCAD,正确;CA平分BCD,正确;B=2CED,CDA=2CED,CDA=DCE+CED,ECD=CED,正确;BCAD,BCE+AEC= 180,1+4+DCE+CED= 180,1+DCE = 90,ACE= 90,ACEC,正确故其中正确的有,4个,故选:D【点睛】此题考查平行线的性质和角平分线的性质,难度一般,利用

12、性质定理判断是关键6C【分析】根据整式的运算法则,立方根的概念,零指数幂的意义即可求出答案【详解】A.原式2,故A错误;B.原式1,故B错误;C、(2a2b)24a4b2,计算正确;D、原式a2,故D错误;故选C【点睛】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型7A【分析】根据平行线的性质得到ABC=BCD,ECD=AEC=50再根据角平分线的定义得到BCE=BCD =ECD=25,由此即可求解【详解】解:ABCD,ABC=BCD,ECD=AEC=50CB平分DCE,BCE=BCD =ECD=25ABC=BCD=25故选A【点睛】本题考查了平行线的性质,角平分线的定

13、义,掌握平行线的性质:两直线平行,内错角相等是解题的关键8B【分析】根据题意,可以画出相应的图形,然后即可发现点所在位置的变化特点,即可得到小球第2021次碰到球桌边时,小球的位置【详解】解:由图可得,点(1,0)第一次碰撞后的点的坐标为(0解析:B【分析】根据题意,可以画出相应的图形,然后即可发现点所在位置的变化特点,即可得到小球第2021次碰到球桌边时,小球的位置【详解】解:由图可得,点(1,0)第一次碰撞后的点的坐标为(0,1),第二次碰撞后的点的坐标为(3,4),第三次碰撞后的点的坐标为(7,0),第四次碰撞后的点的坐标为(8,1),第五次碰撞后的点的坐标为(5,4),第六次碰撞后的点

14、的坐标为(1,0),20216=3365,小球第2021次碰到球桌边时,小球的位置是(5,4),故选:B【点睛】本题考查了坐标确定位置,解答本题的关键是明确题意,发现点的坐标位置的变化特点,利用数形结合的思想解答二、填空题993 【解析】试题分析:当被开方数扩大100倍,则算术平方根就扩大10倍,则点睛:本题主要考查的就是算术平方根的性质.对于算术平方根,当被开方数每扩大100倍,则算术平方根就扩大10倍,当被开解析:93 【解析】试题分析:当被开方数扩大100倍,则算术平方根就扩大10倍,则点睛:本题主要考查的就是算术平方根的性质.对于算术平方根,当被开方数每扩大100倍,则算术平方根就扩大

15、10倍,当被开方数每缩小100倍,则算术平方根就缩小10倍;对于立方根,当被开方数每扩大1000倍,则算术平方根就扩大10倍,当被开方数每缩小1000倍,则算术平方根就缩小10倍.10-3 1 【分析】平面内关于x轴对称的两个点的坐标:横坐标不变,纵坐标互为相反数【详解】已知点的坐标是,且点关于轴对称的点的坐标是,m3;n1, 故答案为3;1解析:-3 1 【分析】平面内关于x轴对称的两个点的坐标:横坐标不变,纵坐标互为相反数【详解】已知点的坐标是,且点关于轴对称的点的坐标是,m3;n1, 故答案为3;1【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标

16、互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数11【分析】根据三角形内角和定理及角平分线的性质求出BAD度数,再由三角形内角与外角的性质可求出ADF的度数,由AFBC可求出AFD=90,再由三角形的内角和定理即可解答【详解】A解析:【分析】根据三角形内角和定理及角平分线的性质求出BAD度数,再由三角形内角与外角的性质可求出ADF的度数,由AFBC可求出AFD=90,再由三角形的内角和定理即可解答【详解】AF是的高,在中,又在中,又AD平分,故答案为:【点睛】本题考查了三角形内角和定理、三角形的高线、及三角形的角平分线等知识,

17、难度中等12【分析】根据平行线的判定与性质分析判断各项正确与否即可【详解】解:BC,ABCD,AAEC,又AD,AECD,AEDF,AMC解析:【分析】根据平行线的判定与性质分析判断各项正确与否即可【详解】解:BC,ABCD,AAEC,又AD,AECD,AEDF,AMCFNM,又BNDFNM,AMCBND,故正确,由条件不能得出AMC90,故不一定正确;故答案为:【点睛】本题考查了对顶角的性质及平行线的判定与性质,难度一般1311【分析】由外角的性质和平行线的性质求出的度数,即可求出的度数,进而求出的度数,求得的度数,即可求出的度数【详解】解:如图,折叠,故答案为:11解析:11【分析】由外角

18、的性质和平行线的性质求出的度数,即可求出的度数,进而求出的度数,求得的度数,即可求出的度数【详解】解:如图,折叠,故答案为:11【点睛】本题考查了角之间的计算,解题的关键是理解折叠就是轴对称,利用轴对称的性质求解14【分析】由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n1+2n,即可得出答案.【详解】由图可知,每个图形的最上面的小正方形中的数字是连续奇数,所以第n解析:【分析】由图可知,最上面的小正方形的数字是连续奇数,左下角的数字是2n,右下角的数字是2n1+2n,即可得出答案.【详解】由图可知,每个图形的最上面的小正方形中的数字是连续奇数,所以第n个图形

19、中最上面的小正方形中的数字是2n1,即2n1=11,n=62=21,4=22,8=23,左下角的小正方形中的数字是2n,b=26=64右下角中小正方形中的数字是2n1+2n,a=11+b=11+64=75,a+b=75+64=139故答案为:139【点睛】本题主要考查了数字变化规律,观察出题目正方形的数字的规律是解题的关键.15(5,2)【分析】根据点P在第一象限,即可判断P点横、纵坐标的符号,再根据点P到x轴的距离为2,到y轴的距离为5,即可写出P点坐标【详解】解:因为点P在第一象限,所以其横、纵坐标分别为正数解析:(5,2)【分析】根据点P在第一象限,即可判断P点横、纵坐标的符号,再根据点

20、P到x轴的距离为2,到y轴的距离为5,即可写出P点坐标【详解】解:因为点P在第一象限,所以其横、纵坐标分别为正数、正数,又因为点P到x轴的距离为2,到y轴的距离为5,所以点P的横坐标为5,纵坐标为2,所以点P的坐标为(5,2),故答案为(5,2)【点睛】此题考查的是求点的坐标,掌握各个象限点的坐标特征及点到坐标轴的距离与坐标的关系是解决此题的关键16【分析】利用点P(x,y)的终结点的定义分别写出点P2的坐标为(1,4),点P3的坐标为(3,3),点P4的坐标为(2,1),点P5的坐标为(2,0),从而得到每4次变换一个循环,然后解析:【分析】利用点P(x,y)的终结点的定义分别写出点P2的坐

21、标为(1,4),点P3的坐标为(3,3),点P4的坐标为(2,1),点P5的坐标为(2,0),从而得到每4次变换一个循环,然后利用202145051可判断点P2021的坐标与点P1的坐标相同【详解】解:根据题意得点P1的坐标为(2,0),则点P2的坐标为(1,4),点P3的坐标为(3,3),点P4的坐标为(2,-1),点P5的坐标为(2,0),而20214505+1,所以点P2021的坐标与点P1的坐标相同,为(2,0),故答案为:【点睛】本题考查了坐标的变化规律探索,找出前5个点的坐标,找出变化规律,是解题的关键三、解答题17(1)-3;(2)-11【分析】(1)分别计算乘方,立方根,绝对值

22、,再合并即可得到答案;(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案【详解】(1)解:原式=(2)解解析:(1)-3;(2)-11【分析】(1)分别计算乘方,立方根,绝对值,再合并即可得到答案;(2)利用乘法的分配律先计算乘法,再计算加减运算即可得到答案【详解】(1)解:原式=(2)解:原式 =【点睛】本题考查的是乘法的分配律的应用,乘方运算,求一个数的立方根,求一个数的绝对值,掌握以上知识是解题的关键18(1);(2);【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;(2)利用提公因式法因式分解解答即可;根据完全平方公式计算即可【详解】解:(1),解析:(

23、1);(2);【分析】(1)逆向运用同底数幂的除法法则以及幂的乘方运算法则计算即可;(2)利用提公因式法因式分解解答即可;根据完全平方公式计算即可【详解】解:(1),;(2),;,【点睛】本题考查了完全平方公式,同底数幂的除法,提公因式法因式分解以及幂的乘方,熟记相关公式与运算法则是解答本题的关键19(1)EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;(2)80【分析】(1)根据平行线的性质及判定填空即可;(2)由EDCE,E50,解析:(1)EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;(2)80【分析】(1

24、)根据平行线的性质及判定填空即可;(2)由EDCE,E50,可得ABCD,DCE50,而CE平分BCD,即得BCD100,故B80【详解】(1)证明:ADBC,BEAD(两直线平行,同位角相等),EDCE,ABCD(内错角相等,两直线平行),DEAD(两直线平行,内错角相等),BD;故答案为:EAD;两直线平行,同位角相等;内错角相等,两直线平行;EAD;两直线平行,内错角相等;(2)解:EDCE,E50,ABCD,DCE50,B+BCD180,CE平分BCD,BCD2DCE100,B80【点睛】本题考查平行线性质及判定的应用,解题关键是要掌握平行线的性质及判定定理,熟练运用它们进行推理和计算

25、20(1)3;(2)B2(3,0),画图见解析【分析】(1)先求出AC,BC的长,然后根据三角形面积公式求解即可;(2)先根据A和A2的坐标,确定平移方式,然后求出B2,C2的坐标,然后描点,顺次解析:(1)3;(2)B2(3,0),画图见解析【分析】(1)先求出AC,BC的长,然后根据三角形面积公式求解即可;(2)先根据A和A2的坐标,确定平移方式,然后求出B2,C2的坐标,然后描点,顺次连接即可得到答案【详解】解:(1)在平面直角坐标系中,的三个顶点的坐标分别是,AC=3,BC=2,;(2)A(-3,2),A2(0,-2),A2是由A向右平移3个单位得到的,向下平移4个单位长度得到的,B2

26、,C2的坐标分别为(3,0),(3,-2),如图所示,即为所求【点睛】本题主要考查了坐标与图形,三角形面积,根据点的坐标确定平移方式,根据平移方式确定点的坐标,解题的关键在于能够熟练掌握相关知识进行求解21(1)3,;(2) 【分析】(1)先根据二次根式的性质求出的整数部分,则小数部分可求;(2)先根据二次根式的性质确定的整数部分,得出10- 的整数部分,即x值,则其小数部分可求,即y值,则x-解析:(1)3,;(2) 【分析】(1)先根据二次根式的性质求出的整数部分,则小数部分可求;(2)先根据二次根式的性质确定的整数部分,得出10- 的整数部分,即x值,则其小数部分可求,即y值,则x-y值

27、可求【详解】解:(1), 整数部分是3, 小数部分为:-3 故答案为:3,-3(2)解: 8 10- x是整数,且0y1,x=8,y= 10-8= ,x-y=的相反数为:,xy的相反数是 【点睛】本题主要考查了估算无理数的大小,代数式求值解题的关键是确定无理数的整数部分即可解决问题二十二、解答题22(1);(2)不同意,理由见解析【分析】(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术平方根的意义即可求出x的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个解析:(1);(2)不同意,理由见解析【分析】(1)设正方形边长为,根据两块纸片面积相等列出方程,再根据算术

28、平方根的意义即可求出x的值;(2)根据两个正方形纸片的面积计算出两个正方形的边长,计算两个正方形边长的和,并与3比较即可解答【详解】解:(1)设正方形边长为,则,由算术平方根的意义可知,所以正方形的边长是(2)不同意因为:两个小正方形的面积分别为和,则它们的边长分别为和,即两个正方形边长的和约为,所以,即两个正方形边长的和大于长方形的长,所以不能在长方形纸片上截出两个完整的面积分别为和的正方形纸片【点睛】本题考查了算术平方根的应用,解题的关键是读懂题意并熟知算术平方根的概念二十三、解答题23(1)PMMN,理由见解析;EPB的度数为125;(2)APM +QMN=90或APM -QMN=90【

29、分析】(1)利用平行线的性质得到APM=PMQ,再根据已知条解析:(1)PMMN,理由见解析;EPB的度数为125;(2)APM +QMN=90或APM -QMN=90【分析】(1)利用平行线的性质得到APM=PMQ,再根据已知条件可得到PMMN;过点N作NHCD,利用角平分线的定义以及平行线的性质求得MNH=35,即可求解;(2)分三种情况讨论,利用平行线的性质即可解决【详解】解:(1)PMMN,理由见解析:AB/CD,APM=PMQ,APM+QMN=90,PMQ +QMN=90,PMMN;过点N作NHCD,AB/CD,AB/ NHCD,QMN=MNH,EPA=ENH,PA平分EPM,EPA

30、= MPA,APM+QMN=90,EPA +MNH=90,即ENH +MNH=90,MNQ +MNH +MNH=90,MNQ=20,MNH=35,EPA=ENH=MNQ +MNH=55,EPB=180-55=125,EPB的度数为125;(2)当点M,N分别在射线QC,QF上时,如图:PMMN,AB/CD,PMQ +QMN=90,APM=PMQ, APM +QMN=90;当点M,N分别在射线QC,线段PQ上时,如图:PMMN,AB/CD,PMN=90,APM=PMQ, PMQ -QMN=90,APM -QMN=90;当点M,N分别在射线QD,QF上时,如图:PMMN,AB/CD,PMQ +QM

31、N=90,APM+PMQ=180, APM+90-QMN=180,APM -QMN=90;综上,APM +QMN=90或APM -QMN=90【点睛】本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键24(1)证明见解析;(2)();()【分析】(1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证;(2)()先根据平行线的性质可得,从而可得,再根据角的和差可得解析:(1)证明见解析;(2)();()【分析】(1)先根据平行线的性质可得,再根据角的和差可得,然后根据平行线的判定即可得证;(

32、2)()先根据平行线的性质可得,从而可得,再根据角的和差可得,然后根据即可得;()设,从而可得,先根据角平分线的定义可得,再根据角的和差可得,然后根据建立方程可求出x的值,从而可得的度数,最后根据平行线的性质即可得【详解】(1),又,;(2)(),由(1)已得:,;()设,则,平分,由(1)已得:,即,解得,又,【点睛】本题考查了平行线的判定与性质、角的和差、角平分线的定义、一元一次方程的几何应用等知识点,熟练掌握平行线的判定与性质是解题关键25(1)45;Fa;(2)F+H的值不变,是定值180【分析】(1)依据AD平分CAE,CF平分ACB,可得CAD=CAE,ACF=ACB,依据CAE是

33、ABC解析:(1)45;Fa;(2)F+H的值不变,是定值180【分析】(1)依据AD平分CAE,CF平分ACB,可得CAD=CAE,ACF=ACB,依据CAE是ABC的外角,可得B=CAE-ACB,再根据CAD是ACF的外角,即可得到F=CAD-ACF=CAE-ACB=(CAE-ACB)=B;(2)由(1)可得,F=ABC,根据角平分线的定义以及三角形内角和定理,即可得到H=90+ABG,进而得到F+H=90+CBG=180【详解】解:(1)AD平分CAE,CF平分ACB,CADCAE,ACFACB,CAE是ABC的外角,BCAEACB,CAD是ACF的外角,FCADACFCAEACB(CA

34、EACB)B45,故答案为45;AD平分CAE,CF平分ACB,CADCAE,ACFACB,CAE是ABC的外角,BCAEACB,CAD是ACF的外角,FCADACFCAEACB(CAEACB)Ba;(2)由(1)可得,FABC,AGB与GAB的角平分线交于点H,AGHAGB,GAHGAB,H180(AGH+GAH)180(AGB+GAB)180(180ABG)90+ABG,F+HABC+90+ABG90+CBG180,F+H的值不变,是定值180【点睛】本题主要考查了三角形内角和定理、三角形外角性质的综合运用,熟练运用定理是解题的关键26DPC=+,理由见解析;(1)70 ;(2) DPC=

35、 ,理由见解析.【解析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=C解析:DPC=+,理由见解析;(1)70 ;(2) DPC= ,理由见解析.【解析】(1)过P作PEAD交CD于E,推出ADPEBC,根据平行线的性质得出=DPE,=CPE,即可得出答案;(2)化成图形,根据平行线的性质得出=DPE,=CPE,即可得出答案【问题探究】解:DPC=+ 如图,过P作PHDF DFCE,PCE=1=, PDF=2DPC=2+1=+ 【问题迁移】(1)70 (图1) ( 图2) (2) 如图1,DPC= - DFCE,PCE=1=, DPC=1-FDP=1-DPC= - 如图2,DPC= -DFCE,PDF=1= DPC=1-ACE=1-DPC= -

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服