资源描述
鞍山市人教版七年级下学期期末压轴难题数学试题
一、选择题
1.如图所示,若平面上4条两两相交,且无三线共点的4条直线,则共有同旁内角的对数为( )
A.12对 B.15对 C.24对 D.32对
2.在下面的四幅图案中,能通过图案(1)平移得到的是( )
A. B. C. D.
3.在平面直角坐标系中位于第二象限的点是( )
A. B. C. D.
4.命题:①对顶角相等;②过一点有且只有一条直线与已知直线平行;③相等的角是对顶角;④同位角相等.其中错误的有( )
A.②③ B.②④ C.③④ D.②③④
5.如图,直线,三角板的直角顶点在直线上,已知,则等于( ).
A.25° B.55° C.65° D.75°
6.给出下列四个说法:①一个数的平方等于1,那么这个数就是1;②4是8的算术平方根;③平方根等于它本身的数只有0;④8的立方根是±2.其中,正确的是( )
A.①② B.①②③ C.②③ D.③
7.如图,AB∥CD,直线EF分别交AB、CD于点E、F,FH平分∠EFD,若∠1=110°,则∠2的度数为( )
A.45° B.40° C.55° D.35°
8.如图,将边长为1的正方形沿轴正方向连续翻转2020次,点依次落在点、、、…的位置上,则点的坐标为( ).
A. B. C. D.
二、填空题
9.9的算术平方根是 .
10.若与点关于轴对称,则的值是___________;
11.如图,BD、CE为△ABC的两条角平分线,则图中∠1、∠2、∠A之间的关系为___________.
12.如图所示,已知AB∥CD,EF平分∠CEG,∠1=80°,则∠2的度数为______.
13.如图,将长方形纸片沿折叠,使得点落在边上的点处,点落在点处,若,则的度数为______.
14.如图,将面积为5的正方形放在数轴上,以表示-1的点为圆心,以正方形的边长为半径作圆,交数轴于点,两点,则点,表示的数分别为__________.
15.在平面直角坐标系中,已知三点,其中a,b满足关系式,若在第二象限内有一点,使四边形的面积与三角形的面积相等,则点P的坐标为________.
16.如图,在平面直角坐标系中,一动点从原点O出发,每次移动1个单位长度,依次得到点P1(0,1),P2(1,1),P3(1,0),P4(1,﹣1),P5(2,﹣1),P6(2,0)⋯,则P2020的坐标是___.
三、解答题
17.计算:
(1);
(2).
18.求下列各式中x的值:
(1)(x+1)3﹣27=0
(2)(2x﹣1)2﹣25=0
19.如图,,,求度数.完成说理过程并注明理由.
解:∵,
∴________( )
又∵,
∴,
∴__________( )
∴( )
∵,
∴______度.
20.如图,在边长为1个单位长度的小正方形网格中建立平面直角坐标系.已知三角形ABC的顶点A的坐标为A(-1,4),顶点B的坐标为(-4,3),顶点C的坐标为(-3,1).
(1)把三角形ABC向右平移5个单位长度,再向下平移4个单位长度得到三角形A′B′C′,请你画出三角形A′B′C′,并直接写出点A′的坐标;
(2)若点P(m,n)为三角形ABC内的一点,则平移后点P在△A′B′C′内的对应点P′的坐标为 .
(3)求三角形ABC的面积.
21.阅读下面的对话,解答问题:
事实上:小慧的表示方法有道理,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:∵ ,即 ,∴ 的整数部分为2,小数部分为 .
请解答:
(1) 的整数部分_____,小数部分可表示为________.
(2)已知:10-=x+y,其中x是整数,且0<y<1,求x-y的相反数.
二十二、解答题
22.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图2的虚线将它剪开后,重新拼成一个大正方形.
(1)基础巩固:拼成的大正方形的面积为______,边长为______;
(2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B与数轴上的重合.以点B为圆心,边为半径画圆弧,交数轴于点E,则点E表示的数是______;
(3)变式拓展:
①如图4,给定的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的正方形吗?若能,请在图中画出示意图;
②请你利用①中图形在数轴上用直尺和圆规表示面积为13的正方形边长所表示的数.
二十三、解答题
23.直线AB∥CD,点P为平面内一点,连接AP,CP.
(1)如图①,点P在直线AB,CD之间,当∠BAP=60°,∠DCP=20°时,求∠APC的度数;
(2)如图②,点P在直线AB,CD之间,∠BAP与∠DCP的角平分线相交于K,写出∠AKC与∠APC之间的数量关系,并说明理由;
(3)如图③,点P在直线CD下方,当∠BAK=∠BAP,∠DCK=∠DCP时,写出∠AKC与∠APC之间的数量关系,并说明理由.
24.如图,,平分,设为,点E是射线上的一个动点.
(1)若时,且,求的度数;
(2)若点E运动到上方,且满足,,求的值;
(3)若,求的度数(用含n和的代数式表示).
25.问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°.求∠APC度数.
小明的思路是:如图2,过P作PE∥AB,通过平行线性质,可得∠APC=50°+60°=110°.
问题迁移:
(1)如图3,AD∥BC,点P在射线OM上运动,当点P在A、B两点之间运动时,∠ADP=∠α,∠BCP=∠β.∠CPD、∠α、∠β之间有何数量关系?请说明理由;
(2)在(1)的条件下,如果点P在A、B两点外侧运动时(点P与点A、B、O三点不重合),请你直接写出∠CPD、∠α、∠β间的数量关系.
26.如图1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.
(1)求证:∠BED=90°;
(2)如图2,延长BE交CD于点H,点F为线段EH上一动点,∠EDF=α,∠ABF的角平分线与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小;
(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论: .
【参考答案】
一、选择题
1.C
解析:C
【分析】
一条直线与另3条直线相交(不交于一点),有3个交点.每2个交点决定一条线段,共有3条线段.4条直线两两相交且无三线共点,共有条线段.每条线段两侧各有一对同旁内角,可知同旁内角的总对数.
【详解】
解:平面上4条直线两两相交且无三线共点,
共有条线段.
又每条线段两侧各有一对同旁内角,
共有同旁内角(对.
故选:C.
【点睛】
本题考查了同旁内角的定义.解题的关键是注意在截线的同旁找同旁内角.要结合图形,熟记同旁内角的位置特点.两条直线被第三条直线所截所形成的八个角中,有两对同旁内角.
2.C
【分析】
平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可.
【详解】
解:A、对应点的连线相交,不能通过平移得到,不符合题意;
B、对应点的连线相交,不能通过平移得到,不符合题
解析:C
【分析】
平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可.
【详解】
解:A、对应点的连线相交,不能通过平移得到,不符合题意;
B、对应点的连线相交,不能通过平移得到,不符合题意;
C、可通过平移得到,符合题意;
D、对应点的连线相交,不能通过平移得到,不符合题意;
故选:C.
【点睛】
本题考查了平移变换,解题的关键是熟练掌握平移变换的性质,属于中考常考题型.
3.B
【分析】
第二象限的点的横坐标小于0,纵坐标大于0,据此解答即可.
【详解】
解:根据第二象限的点的坐标的特征:
横坐标符号为负,纵坐标符号为正,
各选项中只有B(-2,3)符合,
故选:B.
【点睛】
本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
4.D
【分析】
根据对顶角的定义对①③进行判断;根据过直线外一点有且只有一条直线与已知直线平行对②进行判断;根据平行线的性质对④进行判断.
【详解】
对顶角相等,所以①正确,不符合题意;
过直线外一点有且只有一条直线与已知直线平行,所以②不正确,符合题意;
相等的角不一定为对顶角,所以③不正确,符合题意;
两直线平行,同位角相等,所以④不正确,符合题意,
故选:D.
【点睛】
本题考查了命题与定理,主要是判断命题的真假,属于基础题,熟练掌握这些定理是解题的关键.
5.C
【分析】
利用平行线的性质,可证得∠2=∠3,利用已知可证得∠1+∠3=90°,求出∠3的度数,进而求出∠2的度数.
【详解】
解:如图
∵a//b
∴∠2=∠3,
∵∠1+∠3=180°-90°=90°
∴∠3=90°-∠1=90°-25°=65°
∴∠2=65°.
故选C.
【点睛】
本题主要考查了平行线的性质,灵活运用“两直线平行、同位角相等”是解答本题的关键.
6.D
【分析】
分别根据算术平方根的定义、立方根的定义及平方根的定义对各小题进行逐一判断即可.
【详解】
解:①∵(±1)2=1,∴一个数的平方等于1,那么这个数就是1,故①错误;
②∵42=16,∴4是16的算术平方根,故②错误,
③平方根等于它本身的数只有0,故③正确,
④8的立方根是2,故④错误.
故选:D.
【点睛】
本题考查了立方根,平方根和算术平方根的定义,熟知算术平方根的定义、立方根的定义及平方根的定义是解答此题的关键.
7.D
【分析】
根据对顶角相等求出∠3,再根据两直线平行,同旁内角互补求出∠DFE,然后根据角平分线的定义求出∠DFH,再根据两直线平行,内错角相等解答.
【详解】
解:∵∠1=110°,
∴∠3=∠1=110°,
∵AB∥CD,
∴∠DFE=180°-∠3=180°-110°=70°,
∵HF平分∠EFD,
∴∠DFH=∠DFE=×70°=35°,
∵AB∥CD,
∴∠2=∠DFH=35°.
故选:D.
【点睛】
本题考查了平行线的性质,角平分线的定义,对顶角相等的性质,是基础题,熟记各性质并准确识图是解题的关键.
8.D
【分析】
探究规律,利用规律即可解决问题.
【详解】
解:由题意,,,,,,,,,
每4个一循环,
则2021个纵坐标等于1轴,坐标应该是,
故选:D.
【点睛】
本题考查了点的坐标的规律变化
解析:D
【分析】
探究规律,利用规律即可解决问题.
【详解】
解:由题意,,,,,,,,,
每4个一循环,
则2021个纵坐标等于1轴,坐标应该是,
故选:D.
【点睛】
本题考查了点的坐标的规律变化,解题的关键是根据正方形的性质,判断出每翻转4次为一个循环组是解题的关键,要注意翻转一个循环组点向右前行4个单位.
二、填空题
9.【分析】
根据一个正数的算术平方根就是其正的平方根即可得出.
【详解】
∵,
∴9算术平方根为3.
故答案为3.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.
解析:【分析】
根据一个正数的算术平方根就是其正的平方根即可得出.
【详解】
∵,
∴9算术平方根为3.
故答案为3.
【点睛】
本题考查了算术平方根,熟练掌握算术平方根的概念是解题的关键.
10.1
【分析】
根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案.
【详解】
由点与点的坐标关于y轴对称,得:
,,
解得:,,
∴.
故答案为:.
【点睛】
本题
解析:1
【分析】
根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案.
【详解】
由点与点的坐标关于y轴对称,得:
,,
解得:,,
∴.
故答案为:.
【点睛】
本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.
11.∠1+∠2-∠A=90°
【分析】
先根据三角形的外角等于与它不相邻的两个内角的和,写出∠1+∠2与∠A的关系,再根据三角形内角和等于180°,求出∠1+∠2与∠A的度数关系.
【详解】
∵BD、C
解析:∠1+∠2-∠A=90°
【分析】
先根据三角形的外角等于与它不相邻的两个内角的和,写出∠1+∠2与∠A的关系,再根据三角形内角和等于180°,求出∠1+∠2与∠A的度数关系.
【详解】
∵BD、CE为△ABC的两条角平分线,
∴∠ABD=∠ABC,∠ACE=∠ACB,
∵∠1=∠ACE+∠A,∠2=∠ABD+∠A
∴∠1+∠2=∠ACE+∠A+∠ABD+∠A
=∠ABC+∠ACB+∠A+∠A
=(∠ABC+∠ACB+∠A)+∠A
=90°+∠A
故答案为∠1+∠2-∠A=90°.
【点睛】
考查了三角形的内角和等于180°、外角与内角关系及角平分线的性质,是基础题.三角形的外角与内角间的关系:三角形的外角与它相邻的内角互补,等于与它不相邻的两个内角的和.
12.50°
【分析】
由角平分线的定义,结合平行线的性质,易求∠2的度数.
【详解】
解:∵EF平分∠CEG,
∴∠CEG=2∠CEF,
又∵AB∥CD,
∴∠2=∠CEF=(180°−∠1)=50°,
解析:50°
【分析】
由角平分线的定义,结合平行线的性质,易求∠2的度数.
【详解】
解:∵EF平分∠CEG,
∴∠CEG=2∠CEF,
又∵AB∥CD,
∴∠2=∠CEF=(180°−∠1)=50°,
故答案为:50°.
【点睛】
本题主要考查了平行线的性质,解决问题的关键是利用平行线的性质确定内错角相等,然后根据角平分线定义得出所求角与已知角的关系.
13.111°
【分析】
结合题意,根据轴对称和长方形的性质,得,,,,从而推导得;通过计算得,根据平行线同旁内角互补的性质,得,即可得到答案.
【详解】
根据题意,得,,,
∴,
∴
∴
∴
∵
解析:111°
【分析】
结合题意,根据轴对称和长方形的性质,得,,,,从而推导得;通过计算得,根据平行线同旁内角互补的性质,得,即可得到答案.
【详解】
根据题意,得,,,
∴,
∴
∴
∴
∵
∴
∴
故答案为:111°.
【点睛】
本题考查了轴对称、平行线、矩形、余角的知识;解题的关键是熟练掌握轴对称和平行线的性质,从而完成求解.
14.,
【分析】
根据算术平方根的定义以及数轴的定义解答即可.
【详解】
解:∵正方形的面积为5,
∴圆的半径为,
∴点A表示的数为,点B表示的数为.
故答案为:,.
【点睛】
本题考查了实数与数轴,熟
解析:,
【分析】
根据算术平方根的定义以及数轴的定义解答即可.
【详解】
解:∵正方形的面积为5,
∴圆的半径为,
∴点A表示的数为,点B表示的数为.
故答案为:,.
【点睛】
本题考查了实数与数轴,熟记算术平方根的定义是解答本题的关键.
15.(-4,1)
【分析】
根据非负数的性质分别求出a、b,根据三角形的面积公式列式计算得到答案.
【详解】
解:∵,
∴a=3,b=4,
∴A(0,3),B(4,0),C(4,6),
∴△ABC的面积
解析:(-4,1)
【分析】
根据非负数的性质分别求出a、b,根据三角形的面积公式列式计算得到答案.
【详解】
解:∵,
∴a=3,b=4,
∴A(0,3),B(4,0),C(4,6),
∴△ABC的面积=×6×4=12,
四边形ABOP的面积=△AOP的面积+△AOB的面积=×3×(-m)+×3×4=6-m,
由题意得,6-m=12,
解得,m=-4,
∴点P的坐标为(-4,1),
故答案为:(-4,1).
【点睛】
本题考查的是坐标与图形性质,非负数的性质,掌握点的坐标与图形的关系是解题的关键.
16.(673,-1)
【分析】
先根据P6(2,0),P12(4,0),即可得到P6n(2n,0),P6n+4(2n+1,-1),再根据P6×336(2×336,0),可得P2016(672,0),进而
解析:(673,-1)
【分析】
先根据P6(2,0),P12(4,0),即可得到P6n(2n,0),P6n+4(2n+1,-1),再根据P6×336(2×336,0),可得P2016(672,0),进而得到P2020(673,-1).
【详解】
解:由图可得,P6(2,0),P12(4,0),…,P6n(2n,0),P6n+4(2n+1,-1),
∵2016÷6=336,
∴P6×336(2×336,0),即P2016(672,0),
∴P2020(673,-1).
故答案为:(673,-1).
【点睛】
本题主要考查了点的坐标变化规律,解决问题的关键是根据图形的变化规律得到P6n(2n,0).
三、解答题
17.(1)-1;(2).
【分析】
(1)按照立方根的定义与平方的含义分别计算,再求差即可;
(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可.
【详解】
解:(1)原式.
(2)原式.
【点
解析:(1)-1;(2).
【分析】
(1)按照立方根的定义与平方的含义分别计算,再求差即可;
(2)按照算术平方根的含义与绝对值的应用先化简,再合并即可.
【详解】
解:(1)原式.
(2)原式.
【点睛】
本题考查的是立方根,乘方,算术平方根,绝对值的运算,实数的加减运算,掌握运算法则是解题关键.
18.(1)x=2;(2)x=3或x=-2.
【分析】
(1)根据立方根的定义进行求解即可;
(2)根据平方根的定义进行求解,即可得出答案.
【详解】
解:(1)(x+1)3-27=0,
(x+1)3=2
解析:(1)x=2;(2)x=3或x=-2.
【分析】
(1)根据立方根的定义进行求解即可;
(2)根据平方根的定义进行求解,即可得出答案.
【详解】
解:(1)(x+1)3-27=0,
(x+1)3=27,
x+1=3,
x=2;
(2)(2x-1)2-25=0,
(2x-1)2=25,
2x-1=±5,
x=3或x=-2.
【点睛】
本题考查了立方根和平方根,熟练掌握立方根和平方根的定义是解题的关键.
19.∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70
【分析】
根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等
解析:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70
【分析】
根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等,两直线平行,得出AB∥DG,然后根据两直线平行,同旁内角互补解答即可.
【详解】
解:∵EF∥AD,
∴∠2=∠3(两直线平行,同位角相等).
又∵∠1=∠2,
∴∠1=∠3,
∴AB∥DG(内错角相等,两直线平行).
∴∠AGD+∠BAC=180°(两直线平行,同旁内角互补).
∵∠AGD=110°,
∴∠BAC=70度.
故答案为:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70.
【点睛】
本题考查了平行线的判定与性质,熟记性质与判定方法,并判断出AB∥DG是解题的关键.
20.(1)作图见解析,A′(4,0);(2)(m+5,n-4);(3)3.5.
【分析】
(1)首先确定A、B、C三点平移后的位置,再连接即可;
(2)利用平移的性质得出P(m,n)的对应点P′的坐标即
解析:(1)作图见解析,A′(4,0);(2)(m+5,n-4);(3)3.5.
【分析】
(1)首先确定A、B、C三点平移后的位置,再连接即可;
(2)利用平移的性质得出P(m,n)的对应点P′的坐标即可;
(3)直接利用△ABC所在矩形面积减去周围三角形面积进而得出答案.
【详解】
解:(1)如图所示:△A′B′C′即为所求:
A′(4,0);
(2)∵△ABC先向右平移5个单位长度,再向下平移4个单位长度,得到△A′B′C′,
∴P(m,n)的对应点P′的坐标为(m+5,n-4);
(3)△ABC的面积=3×3−×2×1−×3×1−×3×2=3.5.
【点睛】
本题主要考查了坐标与图形的变化-平移,三角形面积求法以及坐标系内图形平移,正确得出对应点位置是解题关键.
21.(1)3,;(2)
【分析】
(1)先根据二次根式的性质求出的整数部分,则小数部分可求;
(2)先根据二次根式的性质确定的整数部分,得出10- 的整数部分,即x值,则其小数部分可求,即y值,则x-
解析:(1)3,;(2)
【分析】
(1)先根据二次根式的性质求出的整数部分,则小数部分可求;
(2)先根据二次根式的性质确定的整数部分,得出10- 的整数部分,即x值,则其小数部分可求,即y值,则x-y值可求.
【详解】
解:(1)∵,
∴,
∴整数部分是3,
小数部分为:-3.
故答案为:3,-3.
(2)解:∵
∴8 10-
∵x是整数,且0<y<1,
∴x=8,y= 10--8= ,
∴x-y=.
∵的相反数为:,
∴x-y的相反数是 .
【点睛】
本题主要考查了估算无理数的大小,代数式求值.解题的关键是确定无理数的整数部分即可解决问题.
二十二、解答题
22.(1)10,;(2);(3)见解析;(4)见解析
【分析】
(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;
(2)根据大正方形的边长结合实
解析:(1)10,;(2);(3)见解析;(4)见解析
【分析】
(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;
(2)根据大正方形的边长结合实数与数轴的关系可得结果;
(3)以2×3的长方形的对角线为边长即可画出图形;
(4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形.
【详解】
解:(1)∵图1中有10个小正方形,
∴面积为10,边长AD为;
(2)∵BC=,点B表示的数为-1,
∴BE=,
∴点E表示的数为;
(3)①如图所示:
②∵正方形面积为13,
∴边长为,
如图,点E表示面积为13的正方形边长.
【点睛】
本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键.
二十三、解答题
23.(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析
【分析】
(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠
解析:(1)80°;(2)∠AKC=∠APC,理由见解析;(3)∠AKC=∠APC,理由见解析
【分析】
(1)先过P作PE∥AB,根据平行线的性质即可得到∠APE=∠BAP,∠CPE=∠DCP,再根据∠APC=∠APE+∠CPE=∠BAP+∠DCP进行计算即可;
(2)过K作KE∥AB,根据KE∥AB∥CD,可得∠AKE=∠BAK,∠CKE=∠DCK,进而得到∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,同理可得,∠APC=∠BAP+∠DCP,再根据角平分线的定义,得出∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,进而得到∠AKC=∠APC;
(3)过K作KE∥AB,根据KE∥AB∥CD,可得∠BAK=∠AKE,∠DCK=∠CKE,进而得到∠AKC=∠BAK﹣∠DCK,同理可得,∠APC=∠BAP﹣∠DCP,再根据已知得出∠BAK﹣∠DCK=∠BAP﹣∠DCP=∠APC,进而得到∠BAK﹣∠DCK=∠APC.
【详解】
(1)如图1,过P作PE∥AB,
∵AB∥CD,
∴PE∥AB∥CD,
∴∠APE=∠BAP,∠CPE=∠DCP,
∴∠APC=∠APE+∠CPE=∠BAP+∠DCP=60°+20°=80°;
(2)∠AKC=∠APC.
理由:如图2,过K作KE∥AB,
∵AB∥CD,
∴KE∥AB∥CD,
∴∠AKE=∠BAK,∠CKE=∠DCK,
∴∠AKC=∠AKE+∠CKE=∠BAK+∠DCK,
过P作PF∥AB,
同理可得,∠APC=∠BAP+∠DCP,
∵∠BAP与∠DCP的角平分线相交于点K,
∴∠BAK+∠DCK=∠BAP+∠DCP=(∠BAP+∠DCP)=∠APC,
∴∠AKC=∠APC;
(3)∠AKC=∠APC
理由:如图3,过K作KE∥AB,
∵AB∥CD,
∴KE∥AB∥CD,
∴∠BAK=∠AKE,∠DCK=∠CKE,
∴∠AKC=∠AKE﹣∠CKE=∠BAK﹣∠DCK,
过P作PF∥AB,
同理可得,∠APC=∠BAP﹣∠DCP,
∵∠BAK=∠BAP,∠DCK=∠DCP,
∴∠BAK﹣∠DCK=∠BAP﹣∠DCP=(∠BAP﹣∠DCP)=∠APC,
∴∠AKC=∠APC.
【点睛】
本题考查了平行线的性质和角平分线的定义,解题的关键是作出平行线构造内错角相等计算.
24.(1)60°;(2)50°;(3)或
【分析】
(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;
(2)根据题意画出图形,先
解析:(1)60°;(2)50°;(3)或
【分析】
(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;
(2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论;
(3)根据题意可分两种情况,①若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,,列出等量关系求解即可等处结论;②若点运动到下方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论.
【详解】
解:(1),,
,
平分,
,
,
又,
;
(2)根据题意画图,如图1所示,
,,
,
,
,
,
又平分,
,
;
(3)①如图2所示,
,
,
平分,
,
,
又,
,
,
解得;
②如图3所示,
,
,
平分,
,
,
又,
,
,
解得.
综上的度数为或.
【点睛】
本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等.两直线平行,同旁内角互补. 两直线平行,内错角相等.合理应用平行线的性质是解决本题的关键.
25.(1),理由见解析;
(2)当点P在B、O两点之间时,;
当点P在射线AM上时,.
【分析】
(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠C
解析:(1),理由见解析;
(2)当点P在B、O两点之间时,;
当点P在射线AM上时,.
【分析】
(1)过P作PE∥AD交CD于E,推出AD∥PE∥BC,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出答案;
(2)分两种情况:①点P在A、M两点之间,②点P在B、O两点之间,分别画出图形,根据平行线的性质得出∠α=∠DPE,∠β=∠CPE,即可得出结论.
【详解】
解:(1)∠CPD=∠α+∠β,理由如下:
如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE+∠CPE=∠α+∠β.
(2)当点P在A、M两点之间时,∠CPD=∠β-∠α.
理由:如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠CPE-∠DPE=∠β-∠α;
当点P在B、O两点之间时,∠CPD=∠α-∠β.
理由:如图,过P作PE∥AD交CD于E.
∵AD∥BC,
∴AD∥PE∥BC,
∴∠α=∠DPE,∠β=∠CPE,
∴∠CPD=∠DPE-∠CPE=∠α-∠β.
【点睛】
本题考查了平行线的性质的运用,主要考核了学生的推理能力,解决问题的关键是作平行线构造内错角,利用平行线的性质进行推导.解题时注意:问题(2)也可以运用三角形外角性质来解决.
26.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.
【分析】
(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°
解析:(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.
【分析】
(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;
(2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,
得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案;
(3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=∠FBP=(180°﹣∠3),∠6=∠FDQ=(180°﹣∠5),即可求解.
【详解】
解:(1)证明:∵BE平分∠ABD,
∴∠EBD=∠ABD,
∵DE平分∠BDC,
∴∠EDB=∠BDC,
∴∠EBD+∠EDB=(∠ABD+∠BDC),
∵AB∥CD,
∴∠ABD+∠BDC=180°,
∴∠EBD+∠EDB=90°,
∴∠BED=180°﹣(∠EBD+∠EDB)=90°.
(2)解:如图2,
由(1)知:∠EBD+∠EDB=90°,
又∵∠ABD+∠BDC=180°,
∴∠ABE+∠EDC=90°,
即∠ABE+α+∠FDC=90°,
∵BG平分∠ABE,DG平分∠CDF,
∴∠ABE=2∠ABG,∠CDF=2∠CDG,
∴2∠ABG+2∠CDG=90°﹣α,
过点G作GP∥AB,
∵AB∥CD,
∴GP∥AB∥CD
∴∠ABG=∠BGP,∠PGD=∠CDG,
∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=;
(3)如图,过点F、G分别作FN∥AB、GM∥AB,
∵AB∥CD,
∴AB∥GM∥FN∥CD,
∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,
∴∠BFD=∠BFN+∠DFN=∠3+∠5,
∠BGD=∠BGM+∠DGM=∠4+∠6,
∵BG平分∠FBP,DG平分∠FDQ,
∴∠4=∠FBP=(180°﹣∠3),
∠6=∠FDQ=(180°﹣∠5),
∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,
=∠3+∠5+(180°﹣∠3)+(180°﹣∠5),
=180°+(∠3+∠5),
=180°+∠BFD,
整理得:2∠BGD+∠BFD=360°.
【点睛】
本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.
展开阅读全文