收藏 分销(赏)

宁波市七中人教版七年级下学期期末压轴难题数学试题.doc

上传人:快乐****生活 文档编号:4866507 上传时间:2024-10-16 格式:DOC 页数:28 大小:857.54KB
下载 相关 举报
宁波市七中人教版七年级下学期期末压轴难题数学试题.doc_第1页
第1页 / 共28页
宁波市七中人教版七年级下学期期末压轴难题数学试题.doc_第2页
第2页 / 共28页
宁波市七中人教版七年级下学期期末压轴难题数学试题.doc_第3页
第3页 / 共28页
宁波市七中人教版七年级下学期期末压轴难题数学试题.doc_第4页
第4页 / 共28页
宁波市七中人教版七年级下学期期末压轴难题数学试题.doc_第5页
第5页 / 共28页
点击查看更多>>
资源描述

1、宁波市七中人教版七年级下学期期末压轴难题数学试题一、选择题1如图,与是( )A同位角B内错角C同旁内角D对顶角2下列四种汽车车标,可以看做是由某个基本图案经过平移得到的是( )ABCD3已知点P的坐标为P(3,5),则点P在第()象限A一B二C三D四4下列命题中,是假命题的是( )A经过一个已知点能画一条且只能画一条直线与已知直线平行B从直线外一点到这条直线的垂线段的长度叫做这点到直线的距离C在同一平面内,一条直线的垂线可以画无数条D连接直线外一点与直线上各点的所有线段中,垂线段最短5如图,直线,被直线,所截,若,则的度数是( )ABCD6下列等式正确的是()ABCD7如图,将一张长方形纸片折

2、叠,若,则的度数是( )A80B70C60D508在直角坐标系中,一个质点从出发沿图中路线依次经过,按此规律一直运动下去,则( )A1009B1010C1011D1012二、填空题9算术平方根是的实数是_10在平面直角坐标系中,点P(-2,3)关于直线y=x-1对称的点的坐标是_11如图,在ABC中,A=50,C=72,BD是ABC的一条角平分线,求ADB=_度12如图,点在上,点在上,则的度数等于_13如图,点E、点G、点F分别在AB、AD、BC上,将长方形ABCD按EF、EG翻折,线段EA的对应边EA恰好落在折痕EF上,点B的对应点B落在长方形外,BF与CD交于点H,已知BHC134,则A

3、GE_14请阅读下列材料,现在规定一种新的运算:,例如:按照这种计算的规定,当,x的值为_15如图,在平面直角坐标系中,已知点,连接,交y轴于B,且,则点B坐标为_16在平面直角坐标系中,点A与原点重合,将点A向右平移1个单位长度得到点A1,将A1向上平移2个单位长度得到点A2,将A2向左平移3个单位长度得到A3,将A3向下平移4个单位长度得到A4,将A4向右平移5个单位长度得到A5按此方法进行下去,则A2021点坐标为_三、解答题17计算: (1)3-(-5)+(-6) (2)18求下列各式中的值:(1);(2)19按逻辑填写步骤和理由,将下面的证明过程补充完整如图,点在直线上,点、在直线上

4、,且,点在线段上,连接,且平分求证:证明:( )( ) (平角定义)平分(已知) ( )( )(已知) ( )(等量代换)20如图,将 向右平移 个单位长度,然后再向上平移 个单位长度,可以得到 (1)画出平移后的 , 的顶点 的坐标为 ;顶点 的坐标为 (2)求 的面积(3)已知点 在 轴上,以 , 为顶点的三角形面积为 ,则 点的坐标为 21大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不能全部地写出来,于是小聪用来表示的小数部分,你同意小聪的表示方法吗?事实上小聪的表示方法是有道理的,因为的整数部分是1,用个数减去其整数部分,差就是它的小数部分请解答下列问题:(1)的整数

5、部分是_,小数部分是_(2)如果的小数部分是a,的整数部分是b,求的值(3)已知,其中x是正整数,求的相反数二十二、解答题22已知足球场的形状是一个长方形,而国际标准球场的长度和宽度(单位:米)的取值范围分别是,若某球场的宽与长的比是1:1.5,面积为7350平方米,请判断该球场是否符合国际标准球场的长宽标准,并说明理由二十三、解答题23已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设PFM,EMF,且(402)2|20|0(1),;直线AB与CD的位置关系是 ;(2)如图2,若点G、H分别在射线MA和线段MF上,且MGH

6、PNF,试找出FMN与GHF之间存在的数量关系,并证明你的结论;(3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若变化,请说明理由24如图,已知AMBN,A64点P是射线AM上一动点(与点A不重合),BC、BD分别平分ABP和PBN,分别交射线AM于点C,D(1)ABN的度数是 ;AMBN,ACB ;(2)求CBD的度数;(3)当点P运动时,APB与ADB之间的数量关系是否随之发生变化?若不变化,请写出它们之间的关系,并说明理由:若变化,请写出变

7、化规律;(4)当点P运动到使ACBABD时,ABC的度数是 25在ABC中,射线AG平分BAC交BC于点G,点D在BC边上运动(不与点G重合),过点D作DEAC交AB于点E(1)如图1,点D在线段CG上运动时,DF平分EDB若BAC100,C30,则AFD;若B40,则AFD;试探究AFD与B之间的数量关系?请说明理由;(2)点D在线段BG上运动时,BDE的角平分线所在直线与射线AG交于点F试探究AFD与B之间的数量关系,并说明理由26如图,点A、B分别在直线MN、GH上,点O在直线MN、GH之间,若,(1)= ;(2)如图2,点C、D是、角平分线上的两点,且,求 的度数;(3)如图3,点F是

8、平面上的一点,连结FA、FB,E是射线FA上的一点,若 ,且,求n的值【参考答案】一、选择题1A解析:A【分析】先确定基本图形中的截线与被截线,进而确定这两个角的位置关系即可【详解】解:根据图象,A与1是两直线被第三条直线所截得到的两角,因而A与1是同位角, 故选:A【点睛】本题主要考查了同位角的定义,是需要识记的内容,比较简单2B【分析】根据平移变换的性质,逐一判断选项,即可得到答案【详解】A. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C解析:B【分析】根据平移变换的性质,逐一判断选项,即可得到答案【详解】A. 可以经过

9、轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;B. 可以经过平移变换得到,故本选项符合题意;C. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;D. 可以经过轴对称变换得到,不能经过平移变换得到,故本选项不符合题意;故选B【点睛】本题主要考查平移变换的性质,掌握平移变换的性质,是解题的关键3D【分析】直接利用第四象限内的点横坐标大于0,纵坐标小于0解答即可【详解】解:点P的坐标为P(3,5),点P在第四象限故选D【点睛】本题主要考查了点的坐标,各象限坐标特点如下:第一象限(+,+),第二象限(-,+)第三象限(-,-)第一象限(+,-)4A【分析】分别利用平行线

10、以及点到直线的距离以及垂线以及垂线段最短的定义分别分析得出即可【详解】解:、在同一平面内,经过一点(点不在已知直线上)能画一条且只能画一条直线与已知直线平行,故选项错误,符合题意;、从直线外一点到这条直线的垂线段的长叫做点到直线的距离,正确,不符合题意;、一条直线的垂线可以画无数条,正确,不符合题意;、连接直线外一点与直线上各点的所有线段中,垂线段最短,正确,不符合题意;故选:A【点评】此题主要考查了平行线、垂线以及垂线段和点到直线的距离等定义,正确把握相关定义是解题关键5C【分析】首先证明ab,推出45,求出5即可【详解】解:12,ab,45,5180355,455,故选:C【点睛】本题考查

11、平行线的判定和性质,解题的关键是熟练掌握基本知识,属于中考常考题型6C【分析】根据算术平方根、立方根的定义计算即可【详解】A、负数没有平方根,故错误B、表示计算算术平方根,所以,故错误C、,故正确D、,故错误故选:C【点睛】本题考查算术平方根、立方根的计算,熟知任何数都有立方根、负数没有平方根是关键7A【分析】先由折叠的性质得出4=2=50,再根据矩形对边平行可以得出答案【详解】解:如图,由折叠性质知4=2=50,3=180-4-2=80,ABCD,1=3=80,故选:A【点睛】本题主要考查平行线的性质,解题的关键是掌握两直线平行同位角相等的性质和折叠的性质8B【分析】根据题意可得A(1,1)

12、,B(-1,2),C(2,3),D(-2,4),E(3,5),F(-3,6),则,由此可知当n为偶数时;,可得 ,可以得到,由此求解即可解析:B【分析】根据题意可得A(1,1),B(-1,2),C(2,3),D(-2,4),E(3,5),F(-3,6),则,由此可知当n为偶数时;,可得 ,可以得到,由此求解即可【详解】解:由题意可知A(1,1),B(-1,2),C(2,3),D(-2,4),E(3,5),F(-3,6),由此可知当n为偶数时 ,可得 ,可以得到,故选B【点睛】本题主要考查了点坐标规律的探索,解题的关键在于能够准确找到相应的规律进行求解二、填空题95【分析】根据算术平方根的定义解

13、答即可【详解】解:算术平方根是的实数是5故答案为:5【点睛】本题主要考查算术平方根的定义,熟知负数没有平方根,0的平方根有1个,正数的平方根有2个解析:5【分析】根据算术平方根的定义解答即可【详解】解:算术平方根是的实数是5故答案为:5【点睛】本题主要考查算术平方根的定义,熟知负数没有平方根,0的平方根有1个,正数的平方根有2个,算术平方根有1个是解题关键10【分析】如图,设点P关于直线y=x1的对称点是点Q,过点P作PAx轴交直线y=x1于点A,连接AQ,先由直线y=x1与两坐标轴的交点坐标确定OBC是等腰直角三角形,然后根据平行线的性质解析:【分析】如图,设点P关于直线y=x1的对称点是点

14、Q,过点P作PAx轴交直线y=x1于点A,连接AQ,先由直线y=x1与两坐标轴的交点坐标确定OBC是等腰直角三角形,然后根据平行线的性质和轴对称的性质可得AP=AQ,PAQ=90,由于点P坐标已知,故可求出点A的坐标,进而可求出点Q坐标【详解】解:如图,设点P关于直线y=x1的对称点是点Q,过点P作PAx轴交直线y=x1于点A,连接AQ,设直线y=x1交x轴于点B,交y轴于点C,则点B(1,0)、点C(0,1),OB=OC=1,OBC=45,PAB=45,P、Q关于直线y=x1对称,AP=AQ,PAB=QAB=45,PAQ=90,AQx轴,P(2,3),且当y=3时,3=x1,解得x=4,A(

15、4,3),AD=3,PA=6=AQ,DQ=3,点Q的坐标是(4,3)故答案为:(4,3)【点睛】本题以平面直角坐标系为载体,考查了直线上点的坐标特点、轴对称的性质、等腰直角三角形的性质等知识,熟练掌握一次函数图象上点的坐标特点和轴对称的性质是解题关键11101【分析】直接利用三角形内角和定理得出ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案【详解】在ABC中,A=50,C=72,ABC=18050解析:101【分析】直接利用三角形内角和定理得出ABC的度数,再利用角平分线的性质结合三角形内角和定理得出答案【详解】在ABC中,A=50,C=72,ABC=1805072=58,BD

16、是ABC的一条角平分线,ABD=29,ADB=1805029=101.故答案为:101.【点睛】此题考查三角形内角和定理,解题关键在于掌握其定理.12180【分析】根据平行线的性质可得1=AFD,从而得到EFC=180-EFD,ECF=180-3,再根据2+ECF+EFC=180,即可得到答案【详解】解:AB解析:180【分析】根据平行线的性质可得1=AFD,从而得到EFC=180-EFD,ECF=180-3,再根据2+ECF+EFC=180,即可得到答案【详解】解:ABCD,1=AFD,EFC=180-EFD,ECF=180-3,2+ECF+EFC=180,2+360-1-3=180,1+3

17、-2=180,故答案为:180【点睛】本题主要考查了三角形内角和定理,平行线的性质,补角的定义,解题的关键在于能够熟练掌握相关知识进行求解1311【分析】由外角的性质和平行线的性质求出的度数,即可求出的度数,进而求出的度数,求得的度数,即可求出的度数【详解】解:如图,折叠,故答案为:11解析:11【分析】由外角的性质和平行线的性质求出的度数,即可求出的度数,进而求出的度数,求得的度数,即可求出的度数【详解】解:如图,折叠,故答案为:11【点睛】本题考查了角之间的计算,解题的关键是理解折叠就是轴对称,利用轴对称的性质求解14【分析】根据题中的新定义化简所求式子,计算即可求出的值【详解】解:根据题

18、中的新定义得:,移项合并得:,解得:,故答案是:【点睛】此题考查了解一元一次方程,解题的关键是掌握其步骤解析:【分析】根据题中的新定义化简所求式子,计算即可求出的值【详解】解:根据题中的新定义得:,移项合并得:,解得:,故答案是:【点睛】此题考查了解一元一次方程,解题的关键是掌握其步骤为:去分母,去括号,移项合并,将未知数系数化为1,求出解15【分析】由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面积可求出的值,则答案可求出【详解】解:(1),如图,连接,设,解析:【分析】由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的

19、面积可求出的值,则答案可求出【详解】解:(1),如图,连接,设,点的坐标为,故答案是:【点睛】本题考查了立方根及算术平方根、完全平方公式、三角形的面积、坐标与图形的性质,解题的关键是利用分割的思想解答16(1011,1010)【分析】求出A1(1,0),A5(3,2),A9(5,4),A13(7,6),探究规律可得A2021(1011,1010)【详解】解:由题意A1(1解析:(1011,1010)【分析】求出A1(1,0),A5(3,2),A9(5,4),A13(7,6),探究规律可得A2021(1011,1010)【详解】解:由题意A1(1,0),A5(3,2),A9(5,4),A13(7

20、,6),可以看出,3,5,7,各个点的纵坐标等于横坐标的相反数+1,故1011,A2021(1011,1010),故答案为:(1011,1010)【点评】本题考查坐标与图形变化平移,规律型问题,解题的关键是学会探究规律的方法,属于中考常考题型三、解答题17(1)2;(2)-1【分析】(1)利用加减法法则计算即可得到结果;(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果【详解】(1)解:3-(-5)+(-6) =3+5-6解析:(1)2;(2)-1【分析】(1)利用加减法法则计算即可得到结果;(2)先算乘方和平方根,再算乘法,最后进行加减计算即可得到结果【详解】(1)解:3-(-5

21、)+(-6) =3+5-6=2(2)解:(-1)2- =1-4 =1-2=-1【点睛】此题考查了实数的运算,熟练掌握运算法则是解本题的关键18(1)或;(2)【分析】(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可【详解】解:(1),或;(2),【点睛】本题主解析:(1)或;(2)【分析】(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可【详解】解:(1),或;(2),【点睛】本题主要考查了利用求平方根和求立方根的方法解方程,解题的关键在于能够熟练掌握相关知识进行求解19已知;垂直定义;2;角平分线定义;等角的余角相等;两直线平行,内错

22、角相等【分析】根据题意和图形可以将题目中的证明过程补充完整,从而可以解答本题【详解】证明:ABAC(已知),解析:已知;垂直定义;2;角平分线定义;等角的余角相等;两直线平行,内错角相等【分析】根据题意和图形可以将题目中的证明过程补充完整,从而可以解答本题【详解】证明:ABAC(已知),BAC=90(垂直的定义),2+3=90,1+4+BAC=180(平角定义),1+4=180-BAC=90,AC平分DAF(已知),1=2(角平分线的定义),3=4(等角的余角相等),ab(已知),4=5(两直线平行,内错角相等),3=5(等量代换)故答案为:已知;垂直定义;90;2;角平分线定义;等角的余角相

23、等;5;两直线平行,内错角相等【点睛】本题考查了垂直的定义、角平分线的定义、平行线的性质和余角的定义,解题的关键是要找准线和对应的角,不能弄混淆20(1)见解析,;(2)5;(3) 或 【分析】(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;(2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可;(3)设P点解析:(1)见解析,;(2)5;(3) 或 【分析】(1)根据平移的性质画出对应的平移图形,然后求出点的坐标即可;(2)根据的面积等于其所在的矩形减去周围几个三角形的面积求解即可;(3)设P点得坐标为 ,因为以 ,P为顶点得三角形得面积为 ,所以 ,求解即可.【详解

24、】解:(1) 如图, 为所作(0,3),(4,0);(2) 计算 的面积 (3)设P点得坐标为(t,0),因为以 , 为顶点得三角形得面积为 ,所以 ,解得 或 ,即 点坐标为 (3,0) 或(5,0)【点睛】本题主要考查了坐标与图形,平移作图,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解.21(1)3;(2)7;(3)【分析】(1)先求出的取值范围,即可求出的整数部分,从而求出结论;(2)先估算的大小,再求出其小数部分a的值,同理估计的大小,再求出其整数部分b的值,即可求解;(解析:(1)3;(2)7;(3)【分析】(1)先求出的取值范围,即可求出的整数部分,从而求出结论;(2)先

25、估算的大小,再求出其小数部分a的值,同理估计的大小,再求出其整数部分b的值,即可求解;(3)根据题意先求出x,y所表示的数,再求出x-y,即可求出其相反数【详解】解:(1)34,的整数部分是3,小数部分是故答案为:3;(2)的小数部分a=2=的整数部分b=4=4=7;(3)的整数部分为2,小数部分为2=,其中x是正整数,y=的相反数为【点睛】此题考查的是求无理数的整数部分和小数部分,掌握无理数的估算方法是解题关键二十二、解答题22符合,理由见解析【分析】根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案【详解】解:符合,理由如下:设宽为b米,则长为1.5b米,由题

26、意得,1.5bb解析:符合,理由见解析【分析】根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案【详解】解:符合,理由如下:设宽为b米,则长为1.5b米,由题意得,1.5bb=7350,b=70,或b=-70(舍去),即宽为70米,长为1.570=105米,100105110,647075,符合国际标准球场的长宽标准【点睛】本题考查算术平方根的意义,列出方程求出长和宽是得出正确答案的前提二十三、解答题23(1)20,20,;(2);(3)的值不变,【分析】(1)根据,即可计算和的值,再根据内错角相等可证;(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;

27、(3)作的平分线交的延长线于解析:(1)20,20,;(2);(3)的值不变,【分析】(1)根据,即可计算和的值,再根据内错角相等可证;(2)先根据内错角相等证,再根据同旁内角互补和等量代换得出;(3)作的平分线交的延长线于,先根据同位角相等证,得,设,得出,即可得【详解】解:(1),;故答案为:20、20,;(2);理由:由(1)得,;(3)的值不变,;理由:如图3中,作的平分线交的延长线于,设,则有:,可得,【点睛】本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键24(1) ;(2);(3)不变,理由见解析;(4)【分析】(1)由平行线的性质,

28、两直线平行,同旁内角互补可直接求出;由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的解析:(1) ;(2);(3)不变,理由见解析;(4)【分析】(1)由平行线的性质,两直线平行,同旁内角互补可直接求出;由平行线的性质,两直线平行,内错角相等可直接写出;(2)由角平分线的定义可以证明CBDABN,即可求出结果;(3)不变,APB:ADB2:1,证APBPBN,PBN2DBN,即可推出结论;(4)可先证明ABCDBN,由(1)ABN116,可推出CBD58,所以ABC+DBN58,则可求出ABC的度数【详解】解:(1)AM/BN,A64,ABN180A116,故答案为:116

29、;AM/BN,ACBCBN,故答案为:CBN;(2)AM/BN,ABN+A180,ABN18064116,ABP+PBN116,BC平分ABP,BD平分PBN,ABP2CBP,PBN2DBP,2CBP+2DBP116,CBDCBP+DBP58;(3)不变,APB:ADB2:1,AM/BN,APBPBN,ADBDBN,BD平分PBN,PBN2DBN,APB:ADB2:1;(4)AM/BN,ACBCBN,当ACBABD时,则有CBNABD,ABC+CBDCBD+DBNABCDBN,由(1)ABN116,CBD58,ABC+DBN58,ABC29,故答案为:29【点睛】本题考查了角平分线的定义,平行

30、线的性质等,解题关键是能熟练运用平行线的性质并能灵活运用角平分线的定义等25(1)115;110;理由见解析;(2);理由见解析【分析】(1)若BAC=100,C=30,由三角形内角和定理求出B=50,由平行线的性质得出EDB=C=30,由解析:(1)115;110;理由见解析;(2);理由见解析【分析】(1)若BAC=100,C=30,由三角形内角和定理求出B=50,由平行线的性质得出EDB=C=30,由角平分线定义得出,由三角形的外角性质得出DGF=100,再由三角形的外角性质即可得出结果;若B=40,则BAC+C=180-40=140,由角平分线定义得出,由三角形的外角性质即可得出结果;

31、由得:EDB=C,由三角形的外角性质得出DGF=B+BAG,再由三角形的外角性质即可得出结论;(2)由(1)得:EDB=C,,由三角形的外角性质和三角形内角和定理即可得出结论【详解】(1)若BAC=100,C=30,则B=180-100-30=50,DEAC,EDB=C=30,AG平分BAC,DF平分EDB,DGF=B+BAG=50+50=100,AFD=DGF+FDG=100+15=115;若B=40,则BAC+C=180-40=140,AG平分BAC,DF平分EDB,DGF=B+BAG,AFD=DGF+FDG=B+BAG+FDG=故答案为:115;110;理由如下:由得:EDB=C,DGF

32、=B+BAG,AFD=DGF+FDG=B+BAG+FDG=;(2)如图2所示:;理由如下:由(1)得:EDB=C,AHF=B+BDH,AFD=180-BAG-AHF【点睛】本题考查了三角形内角和定理、三角形的外角性质、平行线的性质等知识;熟练掌握三角形内角和定理和三角形的外角性质是解题的关键26(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OBH=180,即NAO+AOB+OB解析:(1)100;(2)75;(3)n=3【分析】(1)如图:过O作OP/MN,由MN/OP/GH得NAO+POA=180,POB+OB

33、H=180,即NAO+AOB+OBH=360,即可求出AOB;(2)如图:分别延长AC、CD交GH于点E、F,先根据角平分线求得,再根据平行线的性质得到;进一步求得,然后根据三角形外角的性质解答即可;(3)设BF交MN于K,由NAO=116,得MAO=64,故MAE=,同理OBH=144,HBF=nOBF,得FBH=,从而,又FKN=F+FAK,得,即可求n【详解】解:(1)如图:过O作OP/MN,MN/GHlMN/OP/GHNAO+POA=180,POB+OBH=180NAO+AOB+OBH=360NAO=116,OBH=144AOB=360-116-144=100;(2)分别延长AC、CD交GH于点E、F,AC平分且,又MN/GH,;,BD平分,又;(3)设FB交MN于K,则; ,在FAK中,,, 经检验:是原方程的根,且符合题意.【点睛】本题主要考查平行线的性质及应用,正确作出辅助线、构造平行线、再利用平行线性质进行求解是解答本题的关键

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服