收藏 分销(赏)

广州市中大附中八年级上册压轴题数学模拟试卷及答案.doc

上传人:快乐****生活 文档编号:5343256 上传时间:2024-10-30 格式:DOC 页数:44 大小:2.73MB
下载 相关 举报
广州市中大附中八年级上册压轴题数学模拟试卷及答案.doc_第1页
第1页 / 共44页
广州市中大附中八年级上册压轴题数学模拟试卷及答案.doc_第2页
第2页 / 共44页
广州市中大附中八年级上册压轴题数学模拟试卷及答案.doc_第3页
第3页 / 共44页
广州市中大附中八年级上册压轴题数学模拟试卷及答案.doc_第4页
第4页 / 共44页
广州市中大附中八年级上册压轴题数学模拟试卷及答案.doc_第5页
第5页 / 共44页
点击查看更多>>
资源描述

1、广州市中大附中八年级上册压轴题数学模拟试卷及答案一、压轴题1已知:如图1,直线,EF分别交AB,CD于E,F两点,的平分线相交于点K(1)求的度数;(2)如图2,的平分线相交于点,问与的度数是否存在某种特定的等量关系?写出结论并证明;(3)在图2中作,的平分线相交于点,作,的平分线相交于点,依此类推,作,的平分线相交于点,请用含的n式子表示的度数(直接写出答案,不必写解答过程)2在中,是的角平分线,于点. (1)如图1,连接,求证:是等边三角形;(2)如图2,点是线段上的一点(不与点重合),以为一边,在下方作,交延长线于点.求证:;(3)如图3,点是线段上的点,以为一边,在的下方作,交延长线于

2、点.直接写出,与数量之间的关系.3(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形如图1,在“手拉手”图形中,小明发现若BAC=DAE,AB=AC,AD=AE,则ABDACE(材料理解)(1)在图1中证明小明的发现(深入探究)(2)如图2,ABC和AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:BD=EC;BOC=60;AOE=60;EO=CO,其中正确的有(将所有正确的序号填在横线上)(延伸应用)(3)如图3,AB=BC,ABC=BDC=60,

3、试探究A与C的数量关系4如图所示,在平面直角坐标系中,已知点的坐标,过点作轴,垂足为点,过点作直线轴,点从点出发在轴上沿着轴的正方向运动(1)当点运动到点处,过点作的垂线交直线于点,证明,并求此时点的坐标;(2)点是直线上的动点,问是否存在点,使得以为顶点的三角形和全等,若存在求点的坐标以及此时对应的点的坐标,若不存在,请说明理由5如图,在等边中,线段为边上的中线动点在直线上时,以为一边在的下方作等边,连结(1)求的度数;(2)若点在线段上时,求证:;(3)当动点在直线上时,设直线与直线的交点为,试判断是否为定值?并说明理由6请按照研究问题的步骤依次完成任务(问题背景)(1)如图1的图形我们把

4、它称为“8字形”, 请说理证明A+B=C+D (简单应用)(2)如图2,AP、CP分别平分BAD、BCD,若ABC=20,ADC=26,求P的度数(可直接使用问题(1)中的结论) (问题探究)(3)如图3,直线AP平分BAD的外角FAD,CP平分BCD的外角BCE, 若ABC=36,ADC=16,猜想P的度数为 ;(拓展延伸)(4)在图4中,若设C=x,B=y,CAP=CAB,CDP=CDB,试问P与C、B之间的数量关系为 (用x、y表示P) ;(5)在图5中,AP平分BAD,CP平分BCD的外角BCE,猜想P与B、D的关系,直接写出结论 7(概念认识)如图,在ABC中,若ABDDBEEBC,

5、则BD,BE叫做ABC的“三分线”其中,BD是“邻AB三分线”,BE是“邻BC三分线”(问题解决)(1)如图,在ABC中,A70,B45,若B的三分线BD交AC于点D,则BDC ;(2)如图,在ABC中,BP、CP分别是ABC邻AB三分线和ACB邻AC三分线,且BPCP,求A的度数;(延伸推广)(3)在ABC中,ACD是ABC的外角,B的三分线所在的直线与ACD的三分线所在的直线交于点P若Am,Bn,直接写出BPC的度数(用含 m、n的代数式表示)8RtABC中,C=90,点D、E分别是ABC边AC、BC上的点,点P是一动点令PDA=1,PEB=2,DPE=(1)若点P在线段AB上,如图(1)

6、所示,且=60,则1+2= ;(2)若点P在线段AB上运动,如图(2)所示,则、1、2之间的关系为 ;(3)若点P运动到边AB的延长线上,如图(3)所示,则、1、2之间有何关系?猜想并说明理由;(4)若点P运动到ABC形外,如图(4)所示,则、1、2之间有何关系?猜想并说明理由 9如图,在平面直角坐标系中,点、在轴上且关于轴对称 (1)求点的坐标;(2)动点以每秒2个单位长度的速度从点出发沿轴正方向向终点运动,设运动时间为秒,点到直线的距离的长为,求与的关系式;(3)在(2)的条件下,当点到的距离为时,连接,作的平分线分别交、于点、,求的长10问题背景:(1)如图1,已知ABC中,BAC90,

7、ABAC,直线m经过点A,BD直线m,CE直线m,垂足分别为点D、E求证:DEBDCE拓展延伸:(2)如图2,将(1)中的条件改为:在ABC中,ABAC,D、A、E三点都在直线m上,并且有BDAAECBAC请写出DE、BD、CE三条线段的数量关系(不需要证明)实际应用:(3)如图,在ACB中,ACB90,ACBC,点C的坐标为(2,0),点A的坐标为(6,3),请直接写出B点的坐标11如图1,直角三角形DEF与直角三角形ABC的斜边在同一直线上,EDF30,ABC40,CD平分ACB,将DEF绕点D按逆时针方向旋转,记ADF为(0180),在旋转过程中;(1)如图2,当 时,当 时,DEBC;

8、(2)如图3,当顶点C在DEF内部时,边DF、DE分别交BC、AC的延长线于点M、N,此时的度数范围是 ;1与2度数的和是否变化?若不变求出1与2度数和;若变化,请说明理由;若使得221,求的度数范围12如图,在中,点D在边BC上运动(点D不与点重合),连接AD,作,DE交边AC于点E(1)当时, , (2)当DC等于多少时,请说明理由;(3)在点D的运动过程中,的形状可以是等腰三角形吗?若可以,请求出的度数;若不可以,请说明理由13(阅读材料):(1)在中,若,由“三角形内角和为180”得(2)在中,若,由“三角形内角和为180”得(解决问题):如图,在平面直角坐标系中,点C是x轴负半轴上的

9、一个动点已知轴,交y轴于点E,连接CE,CF是ECO的角平分线,交AB于点F,交y轴于点D过E点作EM平分CEB,交CF于点M(1)试判断EM与CF的位置关系,并说明理由;(2)如图,过E点作PECE,交CF于点P求证:EPC=EDP;(3)在(2)的基础上,作EN平分AEP,交OC于点N,如图请问随着C点的运动,NEM的度数是否发生变化?若不变,求出其值:若变化,请说明理由14已知:MNPQ,点A,B分别在MN,PQ上,点C为MN,PQ之间的一点,连接CA,CB(1)如图1,求证:C=MAC+PBC;(2)如图2,AD,BD,AE,BE分别为MAC,PBC,CAN,CBQ的角平分线,求证:D

10、+E=180;(3)在(2)的条件下,如图3,过点D作DA的垂线交PQ于点G,点F在PQ上,FDA=2FDB,FD的延长线交EA的延长线于点H,若3C=4E,猜想H与GDB的倍数关系并证明15(1)发现:如图1,的内角的平分线和外角的平分线相交于点。当时,则 当时,求的度数(用含的代数式表示)(2)应用:如图2,直线与直线垂直相交于点,点在射线上运动(点不与点重合),点在射线上运动(点不与点重合),延长至,已知的角平分线与的角平分线所在的直线相交于,在中,如果一个角是另一个角的倍,请直接写出的度数.16(1)如图1,和都是等边三角形,且,三点在一条直线上,连接,相交于点,求证:(2)如图2,在

11、中,若,分别以,和为边在外部作等边,等边,等边,连接、恰交于点求证:; 如图2,在(2)的条件下,试猜想,与存在怎样的数量关系,并说明理由17已知在中,点在上,边在上,在中,边在直线上,;(1)如图1,求的度数;(2)如图2,将沿射线的方向平移,当点在上时,求度数;(3)将在直线上平移,当以为顶点的三角形是直角三角形时,直接写出度数18完全平方公式:适当的变形,可以解决很多的数学问题例如:若,求的值解:因为所以所以得根据上面的解题思路与方法,解决下列问题:(1)若,求的值;(2)若,则 ;若则 ;(3)如图,点是线段上的一点,以为边向两边作正方形,设,两正方形的面积和,求图中阴影部分面积19已

12、知ABCD,点E是平面内一点,CDE的角平分线与ABE的角平分线交于点F(1)若点E的位置如图1所示 若ABE=60,CDE=80,则F= ; 探究F与BED的数量关系并证明你的结论; (2)若点E的位置如图2所示,F与BED满足的数量关系式是 (3)若点E的位置如图3所示,CDE 为锐角,且,设F=,则的取值范围为 20如图1在ABC中,ACB=90,AC=BC=10,直线DE经过点C,过点A,B分别作ADDE,BEDE,垂足分别为点D和E,AD=8,BE=6(1)求证:ADCCEB;求DE的长;(2)如图2,点M以3个单位长度/秒的速度从点C出发沿着边CA运动,到终点A,点N以8个单位长度

13、/秒的速度从点B出发沿着线BCCA运动,到终点AM,N两点同时出发,运动时间为t秒(t0),当点N到达终点时,两点同时停止运动,过点M作PMDE于点P,过点N作QNDE于点Q;当点N在线段CA上时,用含有t的代数式表示线段CN的长度;当t为何值时,点M与点N重合;当PCM与QCN全等时,则t=【参考答案】*试卷处理标记,请不要删除一、压轴题1(1);(2),证明见解析;(3)【解析】【分析】(1) 过 作KGAB,交 于 ,证出KG,得到,根据角平分线的性质及平行线的性质得到,即可得到答案; (2)根据角平分线的性质得到,根据求出,根据求出答案;(3)根据(2)得到规律解答即可.【详解】(1)

14、 过 作KGAB,交 于 , ,KG,分别为与的平分线,则 ;(2) ,理由为:,的平分线相交于点,即 ,;(3)由(2)知;同理可得=,.【点睛】此题考查平行线的性质:两直线平行,内错角相等;平行公理的推论:平行于同一直线的两直线平行;角平分线的性质;(3)是难点,注意总结前两问的做题思路得到规律进行解答.2(1)证明见解析;(2)证明见解析;(3)结论:,证明见解析【解析】【分析】(1)先根据直角三角形的性质得出,再根据角平分线的性质可得,然后根据三角形的判定定理与性质可得,最后根据等边三角形的判定即可得证;(2)如图(见解析),延长ED使得,连接MF,先根据直角三角形的性质、等边三角形的

15、判定得出是等边三角形,再根据等边三角形的性质、角的和差得出,然后根据三角形全等的判定与性质、等量代换即可得证;(3)如图(见解析),参照题(2),先证是等边三角形,再根据等边三角形的性质、角的和差得出,然后根据三角形全等的判定与性质、等量代换即可得证【详解】(1)是的角平分线,在和中,是等边三角形;(2)如图,延长ED使得,连接MF,是的角平分线,是等边三角形,即在和中,即即;(3)结论:,证明过程如下:如图,延长BD使得,连接NH由(2)可知,是等边三角形,即在和中,即即【点睛】本题考查了直角三角形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2)和(3),

16、通过作辅助线,构造一个等边三角形是解题关键3(1)证明见解析;(2);(3)A+C=180【解析】【分析】(1)利用等式的性质得出BAD=CAE,即可得出结论;(2)同(1)的方法判断出ABDACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出BOC=60,再判断出BCFACO,得出AOC=120,进而得出AOE=60,再判断出BFCF,进而判断出OBC30,即可得出结论;(3)先判断出BDP是等边三角形,得出BD=BP,DBP=60,进而判断出ABDCBP(SAS),即可得出结论【详解】(1)证明:BAC=DAE,BAC+CAD=DAE+CAD,BAD=CAE,在ABD和ACE中,

17、 ,ABDACE;(2)如图2,ABC和ADE是等边三角形,AB=AC,AD=AE,BAC=DAE=60,BAD=CAE,在ABD和ACE中, ,ABDACE,BD=CE,正确,ADB=AEC,记AD与CE的交点为G,AGE=DGO,180-ADB-DGO=180-AEC-AGE,DOE=DAE=60,BOC=60,正确,在OB上取一点F,使OF=OC,OCF是等边三角形,CF=OC,OFC=OCF=60=ACB,BCF=ACO,AB=AC,BCFACO(SAS),AOC=BFC=180-OFC=120,AOE=180-AOC=60,正确,连接AF,要使OC=OE,则有OC=CE,BD=CE,

18、CF=OF=BD,OF=BF+OD,BFCF,OBCBCF,OBC+BCF=OFC=60,OBC30,而没办法判断OBC大于30度,所以,不一定正确,即:正确的有,故答案为;(3)如图3, 延长DC至P,使DP=DB,BDC=60,BDP是等边三角形,BD=BP,DBP=60,BAC=60=DBP,ABD=CBP,AB=CB,ABDCBP(SAS),BCP=A,BCD+BCP=180,A+BCD=180【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键4(1)证明见解析;(2)存在,或,或,或,或,或,【解析】【分析】(1)通过

19、全等三角形的判定定理ASA证得ABPPCD,由全等三角形的对应边相等证得APDP,DCPB3,易得点D的坐标;(2)设P(a,0),Q(2,b)需要分类讨论:ABPC,BPCQ;ABCQ,BPPC结合两点间的距离公式列出方程组,通过解方程组求得a、b的值,得解【详解】(1)轴在和中,(2)设,解得或,或,或,或,解得,或,综上:,或,或,或,或,或,【点睛】考查了三角形综合题涉及到了全等三角形的判定与性质,两点间的距离公式,一元一次绝对值方程组的解法等知识点解答(2)题时,由于没有指明全等三角形的对应边(角),所以需要分类讨论,以防漏解5(1)30;(2)证明见解析;(3)是定值,.【解析】【

20、分析】(1)根据等边三角形的性质可以直接得出结论;(2)根据等边三角形的性质就可以得出,由等式的性质就可以,根据就可以得出;(3)分情况讨论:当点在线段上时,如图1,由(2)可知,就可以求出结论;当点在线段的延长线上时,如图2,可以得出而有而得出结论;当点在线段的延长线上时,如图3,通过得出同样可以得出结论【详解】(1)是等边三角形,线段为边上的中线,(2)与都是等边三角形,在和中,;(3)是定值,理由如下:当点在线段上时,如图1,由(2)可知,则,又,是等边三角形,线段为边上的中线平分,即当点在线段的延长线上时,如图2,与都是等边三角形,在和中,同理可得:,当点在线段的延长线上时,与都是等边

21、三角形,在和中,同理可得:,综上,当动点在直线上时,是定值,【点睛】此题考查等边三角形的性质,全等三角形的判定及性质,等边三角形三线合一的性质,解题中注意分类讨论的思想解题.6(1)见解析;(2)P=23;(3)P=26;(4)P=;(5)P=【解析】【分析】(1)根据三角形内角和定理即可证明;(2)如图2,根据角平分线的性质得到1=2,3=4,列方程组即可得到结论;(3)由AP平分BAD的外角FAD,CP平分BCD的外角BCE,推出1=2,3=4,推出PAD=180-2,PCD=180-3,由P+(180-1)=D+(180-3),P+1=B+4,推出2P=B+D,即可解决问题;(4)根据题

22、意得出B+CAB=C+BDC,再结合CAP=CAB,CDP=CDB,得到y+(CAB-CAB)=P+(BDC-CDB),从而可得P=y+CAB-CAB-CDB+CDB=;(5)根据题意得出B+BAD=D+BCD,DAP+P=PCD+D,再结合AP平分BAD,CP平分BCD的外角BCE,得到BAD+P=BCD+(180-BCD)+D,所以P=90+BCD-BAD +D=.【详解】解:(1)证明:在AOB中,A+B+AOB=180,在COD中,C+D+COD=180,AOB=COD,A+B=C+D;(2)解:如图2,AP、CP分别平分BAD,BCD,1=2,3=4,由(1)的结论得:,+,得2P+

23、2+3=1+4+B+D,P=(B+D)=23;(3)解:如图3,AP平分BAD的外角FAD,CP平分BCD的外角BCE,1=2,3=4,PAD=180-2,PCD=180-3,P+(180-1)=D+(180-3),P+1=B+4,2P=B+D,P=(B+D)=(36+16)=26;故答案为:26;(4)由题意可得:B+CAB=C+BDC,即y+CAB=x+BDC,即CAB-BDC=x-y,B+BAP=P+PDB,即y+BAP=P+PDB,即y+(CAB-CAP)=P+(BDC-CDP),即y+(CAB-CAB)=P+(BDC-CDB),P=y+CAB-CAB-CDB+CDB= y+(CAB-

24、CDB)=y+(x-y)=故答案为:P=;(5)由题意可得:B+BAD=D+BCD,DAP+P=PCD+D,B-D=BCD-BAD,AP平分BAD,CP平分BCD的外角BCE,BAP=DAP,PCE=PCB,BAD+P=(BCD+BCE)+D,BAD+P=BCD+(180-BCD)+D,P=90+BCD-BAD +D=90+(BCD-BAD)+D=90+(B-D)+D=,故答案为:P=.【点睛】本题考查三角形内角和,三角形的外角的性质、多边形的内角和等知识,解题的关键是学会用方程组的思想思考问题,属于中考常考题型7(1)85或100;(2)45;(3)m或m或mn或mn或nm【解析】【分析】(

25、1)根据题意可得的三分线有两种情况,画图根据三角形的外角性质即可得的度数;(2)根据、分别是邻三分线和邻三分线,且可得,进而可求的度数;(3)根据的三分线所在的直线与的三分线所在的直线交于点分四种情况画图:情况一:如图,当和分别是“邻三分线”、“邻三分线”时;情况二:如图,当和分别是“邻三分线”、“邻三分线”时;情况三:如图,当和分别是“邻三分线”、“邻三分线”时;情况四:如图,当和分别是“邻三分线”、“邻三分线”时,再根据,即可求出的度数【详解】解:(1)如图,当是“邻三分线”时,;当是“邻三分线”时,;故答案为:85或100;(2),又、分别是邻三分线和邻三分线,在中,(3)分4种情况进行

26、画图计算:情况一:如图,当和分别是“邻三分线”、“邻三分线”时,; 情况二:如图,当和分别是“邻三分线”、“邻三分线”时,;情况三:如图,当和分别是“邻三分线”、“邻三分线”时,;情况四:如图,当和分别是“邻三分线”、“邻三分线”时,当时,;当时,【点睛】本题考查了三角形的外角性质,解决本题的关键是掌握三角形的外角性质注意要分情况讨论8(1)150;(2)1290;(3)1902,理由详见解析;(4)2901,理由详见解析【解析】【分析】(1)先用平角的得出,CDP=180-1,CEP=180-2,最后用四边形的内角和即可;(2)同(1)方法即可;(3)利用平角的定义和三角形的内角和即可得出结

27、论;(4)利用三角形的内角和和外角的性质即可得出结论【详解】解:(1) 1+CDP=180,CDP=180-1,同理:CEP=180-2,根据四边形的内角和定理得,CDP+DPE+CEP+C=360,C=90,180-1+180-2+90=360,1+2=90+=90+60=150,故答案为:150; (2) 1+CDP=180,CDP=180-1,同理:CEP=180-2,根据四边形的内角和定理得,CDP+DPE+CEP+C=360,C=90,180-1+180-2+90=360,1+2=90+,故答案为:1+2=90+;(3)1902 理由如下:如图3,设DP与BE的交点为F,2DFE,D

28、FEC1,1C2902 (4)2901,理由如下:如图4,设PE与AC的交点为G,PGDEGC,1801C1802,2901故答案为2901【点睛】此题是三角形综合题,主要考查了四边形的内角和,三角形的内角和,三角形的外角的性质,平角的定义,解本题的关键是将1,2,转化到一个三角形或四边形中,是一道比较简单的中考常考题9(1)C(4,0);(2);(3)【解析】【分析】(1)根据对称的性质知为等边三角形,利用直角三角形中30度角的性质即可求得答案;(2)利用面积法可求得,再利用坐标系中点的特征即可求得答案;(3)利用(2)的结论求得,利用角平分线的性质证得,求得,利用面积法求得,再利用直角三角

29、形中30度角的性质即可求得答案【详解】(1)点、关于轴对称,为等边三角形,点C的坐标为:;(2)连接,即:;(3)点到的距离为,延长交于点,过点作轴于点,连接、,为的角平分线,为等边三角形,设,在中,在中,【点睛】本题是三角形综合题,涉及的知识有:含30度直角三角形的性质,全等三角形的判定与性质,外角性质,角平分线的性质,等边三角形的判定和性质,坐标与图形性质,熟练掌握性质及定理、灵活运用面积法求线段的长是解本题的关键10(1)证明见解析;(2)DEBDCE;(3)B(1,4)【解析】【分析】(1)证明ABDCAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可;(2)根据三

30、角形内角和定理、平角的定义证明ABD=CAE,证明ABDCAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可;(3)根据AECCFB,得到CF=AE=3,BF=CE=OE-OC=4,根据坐标与图形性质解答【详解】(1)证明:BD直线m,CE直线m,ADBCEA90BAC90BADCAE90BADABD90CAEABD 在ADB和CEA中ADBCEA(AAS)AEBD,ADCEDEAEADBDCE 即:DEBDCE (2)解:数量关系:DEBDCE 理由如下:在ABD中,ABD=180-ADB-BAD,CAE=180-BAC-BAD,BDA=AEC,ABD=CAE,在ABD和

31、CAE中, ABDCAE(AAS)AE=BD,AD=CE,DE=AD+AE=BD+CE;(3)解:如图,作AEx轴于E,BFx轴于F,由(1)可知,AECCFB,CF=AE=3,BF=CE=OE-OC=4,OF=CF-OC=1,点B的坐标为B(1,4)【点睛】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键11(1)10,100;(2)5585;1与2度数的和不变,理由见解析5560【解析】【分析】(1)当EDAB40时,得出3040,即可得出结果;当时,DEAB,得出5030180,即可得出结果;(2)由已知得出ACD45,A50,推出CDA

32、85,当点C在DE边上时,3085,解得55,当点C在DF边上时,85,即可得出结果;连接MN,由三角形内角和定理得出CNMCMNMCN180,则CNMCMN90,由三角形内角和定理得出DNMDMNMDN180,即2CNMCMN1MDN180,即可得出结论;由,1260,得出22(602),解得240,由三角形内角和定理得出2NDMA180,即23050180,则2100,得出10040,解得60,再由当顶点C在DEF内部时,5585,即可得出结果【详解】解:(1)B40,当EDAB40时,而EDF30,解得:10;当时,DEAB,此时A+EDA180,解得:100;故答案为10,100;(2

33、)ABC40,CD平分ACB,ACD45,A50,CDA85,当点C在DE边上时,解得:,当点C在DF边上时,当顶点C在DEF内部时,;故答案为:;1与2度数的和不变;理由如下:连接MN,如图所示:在CMN中,CNM+CMN+MCN180,CNM+CMN90,在MND中,DNM+DMN+MDN180,即2+CNM+CMN+1+MDN180,;221,1+260,240,即,解得:60,当顶点C在DEF内部时,的度数范围为【点睛】本题考查了平行线的性质、直角三角形的性质、三角形内角和定理、不等式等知识,合理选择三角形后利用三角形内角和定理列等量关系是解决问题的关键12(1)30,100;(2),

34、见解析;(3)可以,或【解析】【分析】(1)根据平角的定义,可求出 EDC 的度数,根据三角形内和定理,即可求出 DEC ;(2)当 AB=DC 时,利用 AAS 可证明 ABDDCE ,即可得出 AB=DC=3 ;(3)假设 ADE 是等腰三角形,分为三种情况讨论:当 DA=DE 时,求出 DAE=DEA=70 ,求出 BAC ,根据三角形的内角和定理求出 BAD ,根据三角形的内角和定理求出 BDA 即可;当 AD=AE 时, ADE=AED=40 ,根据 AEDC ,得出此时不符合;当 EA=ED 时,求出 DAC ,求出 BAD ,根据三角形的内角和定理求出 ADB 【详解】(1)在

35、BAD 中,B=50,BDA=100 ,故答案为,(2)当时,理由如下:,在和中(3)可以,理由如下:,分三种情况讨论:当时,当时,又点D与点B重合,不合题意当时,综上所述,当的度数为或时,是等腰三角形【点睛】本题考查的是等腰三角形的判定与性质、全等三角形的判定与性质、三角形外角的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键13(1)EMCF,理由见解析;(2)证明见解析;(3)不变,且NEM=45,理由见解析【解析】【分析】(1)EMCF,分别利用角平分线的性质、平行线的性质、三角形的内角和定理进行求证即可;(2)根据垂直定义和三角形的内角和定理证得DCO+C

36、DO=90,ECP+EPC=90,再利用等角的余角相等和对顶角相等即可证得结论;(3)不变,且NEM=45,先利用平行线的性质得到AEC=ECO=2ECP,进而有AEP=CEP+AEC=90+2ECP,再由角平分线的定义NEP=AEN=45+ECP,再根据同角的余角相等得到ECP=MEP,然后等量代换证得NEM=45,是定值【详解】解:(1)EMCF,理由如下:CF平分ECO,EM平分FEC,ECF=FCO=,FEM=CEM=ABx轴ECO+CEF=180EMC=180-(CEM+ECF)=180-90=90EMCF(2)由题得,EOC=90DCO+CDO=180-EOC=180-90=90P

37、ECECEP=90ECP+EPC=180-CEP=180-90=90DCO=ECPCDO=EPC又CDO=EDPEPC=EDP(3)不变,且NEM=45,理由如下:ABx轴AEC=ECO=2ECPAEP=CEP+AEC=90+2ECPEN平分AEPNEP=AEN=45+ECPCEP=90ECP+EPC=90又EMC=90MEP+EPC=90ECP=MEPNEP=NEM+MEP=NEM+ECP 又NEP=45+ECPNEM=45【点睛】本题是一道综合探究题,涉及有平行线的性质、角平分线的定义、三角形的内角和定理、同(等)角的余角相等、对顶角相等、垂线性质等知识,解答的关键是认真审题,结合图形,寻

38、找相关联信息,确定解题思路,进而探究、推理、论证14(1)见解析;(2)见解析;(3)猜想:H= 3GDB,证明见解析【解析】【分析】(1)作辅助线:过C作EFMN,根据平行的传递性可知这三条直线两两平行,由平行线的性质得到内错角相等MAC=ACF,BCF=PBC,再进行角的加和即可得出结论;(2)根据角平分线线定理得知,利用平角为180得到DAE=90,同理得,再根据四边形内角和180,得出结论;(3)由(1)(2)中的结论进行等量代换得到3ADB=2E,并且两角的和为180,由此得到两个角的度数分别为72和108,利用角的和与差得到HDA=36,H=54,由此得到倍数关系【详解】(1)如图:过C作EFMN,MNPQ,MNEFPQ,MAC=ACF,BCF=PBC,ACF+BCF=MAC+PBC,即ACB=MAC+PBC (2)AD,AE分别为MAC,CAN的角平分线,于是DAE=90同理可得:,由(1)可得: (3)猜想:H= 3GDB. 理由如下:由(1)可知:,3C=4E,6ADB=4E,3ADB=2E,

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服