1、广州二中应元学校八年级上册压轴题数学模拟试卷及答案一、压轴题1探索发现:根据你发现的规律,回答下列问题:(1) , ;(2)利用你发现的规律计算:(3)利用规律解方程:2在经典几何图形的研究与变式一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线,上,且每两条平行线之间的距离为1,求AB的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B、C向作垂线,就能利用全等三角形的知识求出AB的长.(2)小林说:“我们可以改变的形状.如图2,且每两条平行线之间的距离为1,求AB的长.”(3)小谢说:“我们除了改变的形状,还能改
2、变平行线之间的距离.如图3,等边三角形ABC三个顶点分别落在三条平行线,上,且与之间的距离为1,与之间的距离为2,求AB的长、”请你根据3位同学的提示,分别求出三种情况下AB的长度. 3已知在ABC中,ABAC,射线BM、BN在ABC内部,分别交线段AC于点G、H(1)如图1,若ABC60,MBN30,作AEBN于点D,分别交BC、BM于点E、F求证:12;如图2,若BF2AF,连接CF,求证:BFCF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若BFEBAC2CFE,求的值4(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的
3、底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形如图1,在“手拉手”图形中,小明发现若BAC=DAE,AB=AC,AD=AE,则ABDACE(材料理解)(1)在图1中证明小明的发现(深入探究)(2)如图2,ABC和AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:BD=EC;BOC=60;AOE=60;EO=CO,其中正确的有(将所有正确的序号填在横线上)(延伸应用)(3)如图3,AB=BC,ABC=BDC=60,试探究A与C的数量关系5(1)填空把一张长方形的纸片按如图所示的方式折叠,为折痕,折叠后的点落在或的延长线上,那么的度数是_;把一张长
4、方形的纸片按如图所示的方式折叠,点与点重合,为折痕,折叠后的点落在或的延长线上,那么的度数是_(2)解答:把一张长方形的纸片按如图所示的方式折叠,为折痕,折叠后的点落在或的延长线上左侧,且,求的度数;把一张长方形的纸片按如图所示的方式折叠,点与点重合,为折痕,折叠后的点落在或的延长线右侧,且,求的度数(3)探究:把一张四边形的纸片按如图所示的方式折叠,为折痕,设,求,之间的数量关系6在等腰中,,为边上的高,点在的外部且,,连接交直线于点,连接(1)如图,当时,求证:;(2)如图,当时,求的度数;(3)如图,当时,求证:7(1)问题发现:如图1,ACB和DCE均为等边三角形,点A、D、E在同一直
5、线上,连接BE请直接写出AEB的度数为_;试猜想线段AD与线段BE有怎样的数量关系,并证明;(2)拓展探究:图2, ACB和DCE均为等腰三角形,ACBDCE90,点A、D、E在同直线上, CM为DCE中DE边上的高,连接BE,请判断AEB的度数线段CM、AE、BE之间的数量关系,并说明理由8已知ABC,P 是平面内任意一点(A、B、C、P 中任意三点都不在同一直线上)连接 PB、PC,设PBAs,PCAt,BPCx,BACy(1)如图,当点 P 在ABC 内时,若 y70,s10,t20,则 x ;探究 s、t、x、y 之间的数量关系,并证明你得到的结论(2)当点 P 在ABC 外时,直接写
6、出 s、t、x、y 之间所有可能的数量关系,并画出相应的图形9某校八年级数学兴趣小组对“三角形内角或外角平分线的夹角与第三个内角的数量关系”进行了探究(1)如图1,在ABC中,ABC与ACB的平分线交于点P,A64,则BPC ;(2)如图2,ABC的内角ACB的平分线与ABC的外角ABD的平分线交于点E其中A,求BEC(用表示BEC);(3)如图3,CBM、BCN为ABC的外角,CBM、BCN的平分线交于点Q,请你写出BQC与A的数量关系,并证明10问题背景:(1)如图1,已知ABC中,BAC90,ABAC,直线m经过点A,BD直线m,CE直线m,垂足分别为点D、E求证:DEBDCE拓展延伸:
7、(2)如图2,将(1)中的条件改为:在ABC中,ABAC,D、A、E三点都在直线m上,并且有BDAAECBAC请写出DE、BD、CE三条线段的数量关系(不需要证明)实际应用:(3)如图,在ACB中,ACB90,ACBC,点C的坐标为(2,0),点A的坐标为(6,3),请直接写出B点的坐标11如图,以直角三角形AOC的直角顶点O为原点,以OC,OA所在直线为轴和轴建立平面直角坐标系,点A(0,a),C(b,0)满足(1)a= ;b= ;直角三角形AOC的面积为 (2)已知坐标轴上有两动点P,Q同时出发,P点从C点出发以每秒2个单位长度的速度向点O匀速移动,Q点从O点出发以每秒1个单位长度的速度向
8、点A匀速移动,点P到达O点整个运动随之结束AC的中点D的坐标是(4,3),设运动时间为t秒问:是否存在这样的t,使得ODP与ODQ的面积相等?若存在,请求出t的值;若不存在,请说明理由(3)在(2)的条件下,若DOC=DCO,点G是第二象限中一点,并且y轴平分GOD点E是线段OA上一动点,连接接CE交OD于点H,当点E在线段OA上运动的过程中,探究GOD,OHC,ACE之间的数量关系,并证明你的结论(三角形的内角和为180)12数学活动课上,老师出了这样一个题目:“已知:于,点、分别在和上,作线段和(如图1),使求证:”(1)聪聪同学给出一种证明问题的辅助线:如图2,过作,交于请你根据聪聪同学
9、提供的辅助线(或自己添加其它辅助线),给出问题的证明(2)若点在直线下方,且知,直接写出和之间的数量关系13在ABC中,已知A(1)如图1,ABC、ACB的平分线相交于点D求BDC的大小(用含的代数式表示);(2)如图2,若ABC的平分线与ACE的平分线交于点F,求BFC的大小(用含的代数式表示);(3)在(2)的条件下,将FBC以直线BC为对称轴翻折得到GBC,GBC的平分线与GCB的平分线交于点M(如图3),求BMC的度数(用含的代数式表示)14(1)发现:如图1,的内角的平分线和外角的平分线相交于点。当时,则 当时,求的度数(用含的代数式表示)(2)应用:如图2,直线与直线垂直相交于点,
10、点在射线上运动(点不与点重合),点在射线上运动(点不与点重合),延长至,已知的角平分线与的角平分线所在的直线相交于,在中,如果一个角是另一个角的倍,请直接写出的度数.15阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题请看这个例题:如图1,在四边形ABCD中,BAD=BCD=90,AB=AD,若AC=2cm,求四边形ABCD的面积解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明BAEDAC,根据全等三角形的性质得AE=AC=2, EAB=CAD,则EAC=EAB+BAC=DAC+BAC=BAD=90,得S四边形ABCD=SABC+SADC=SABC+
11、SABE=SAEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积(1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2(2)请你用上面学到的方法完成下面的习题 如图2,已知FG=FN=HM=GH+MN=2cm,G=N=90,求五边形FGHMN的面积16(1)如图1,和都是等边三角形,且,三点在一条直线上,连接,相交于点,求证:(2)如图2,在中,若,分别以,和为边在外部作等边,等边,等边,连接、恰交于点求证:; 如图2,在(2)的条件下,试猜想,与存在怎样的数量关系,并说明理由17直线与相互垂直,垂足为点,点在射线上运动,点在射线上运动,点、点均不与点重合(1)如图1,
12、平分,平分,若,求的度数;(2)如图2,平分,平分,的反向延长线交于点若,则_度(直接写出结果,不需说理);点、在运动的过程中,是否发生变化,若不变,试求的度数:若变化,请说明变化规律(3)如图3,已知点在的延长线上,的角平分线、的角平分线与的角平分线所在的直线分别相交于的点、,在中,如果有一个角的度数是另一个角的4倍,请直接写出的度数18(1)在等边三角形ABC中,如图,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则BFE的度数是 度;如图,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时BFE的度数是 度;(2)如图,在ABC中,AC=
13、BC,ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若ACB=,求BFE的大小(用含的代数式表示)19(1)探索发现:如图1,已知RtABC中,ACB90,ACBC,直线l过点C,过点A作ADl,过点B作BEl,垂足分别为D、E求证:ADCE,CDBE(2)迁移应用:如图2,将一块等腰直角的三角板MON放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O重合,另两个顶点均落在第一象限内,已知点M的坐标为(1,3),求点N的坐标(3)拓展应用:如图3,在平面直角坐标系内,已知直线y3x+3与y轴交于点P,与x轴
14、交于点Q,将直线PQ绕P点沿逆时针方向旋转45后,所得的直线交x轴于点R求点R的坐标20RtABC中,C=90,点D、E分别是ABC边AC、BC上的点,点P是一动点令PDA=1,PEB=2,DPE=(1)若点P在线段AB上,如图(1)所示,且=60,则1+2= ;(2)若点P在线段AB上运动,如图(2)所示,则、1、2之间的关系为 ;(3)若点P运动到边AB的延长线上,如图(3)所示,则、1、2之间有何关系?猜想并说明理由;(4)若点P运动到ABC形外,如图(4)所示,则、1、2之间有何关系?猜想并说明理由 【参考答案】*试卷处理标记,请不要删除一、压轴题1(1);(2);(3)见解析【解析】
15、【分析】(1)根据简单的分式可得,相邻两个数的积的倒数等于它们的倒数之差,即可得到和(2)根据(1)规律将乘法写成减法的形式,可以观察出前一项的减数等于后一项的被减数,因此可得它们的和.(3)首先利用(2)的和的结果将左边化简,再利用分式方程的解法求解即可.【详解】解:(1), ;故答案为(2)原式 ;(3)已知等式整理得: 所以,原方程即: ,方程的两边同乘x(x+5),得:x+5x2x1,解得:x3,检验:把x3代入x(x+5)240,原方程的解为:x3【点睛】本题主要考查学生的归纳总结能力,关键在于根据简单的数的运算寻找规律,是考试的热点.2(1);(2);(3)【解析】【分析】(1)分
16、别过点B,C向l1作垂线,交l1于M,N两点,证明ABMCAN,得到AM=CN,AN=BM,即可得出AB;(2)分别过点B,C向l1作垂线,交l1于点P,Q两点,在l1上取M,N使AMB=CNA=120,证明AMBCAN,得到CN=AM,再通过PBM和QCN算出PM和NQ的值,得到AP,最后在APB中,利用勾股定理算出AB的长;(3)在l3上找M和N,使得BNC=AMC=60,过B作l3的垂线,交l3于点P,过A作l3的垂线,交l3于点Q,证明BCNCAM,得到CN=AM,在BPN和AQM中利用勾股定理算出NP和AM,从而得到PC,结合BP算出BC的长,即为AB.【详解】解:(1)如图,分别过
17、点B,C向l1作垂线,交l1于M,N两点,由题意可得:BAC=90,NAC+MAB=90,NAC+NCA=90,MAB=NCA,在ABM和CAN中,ABMCAN(AAS),AM=CN=2,AN=BM=1,AB=;(2)分别过点B,C向l1作垂线,交l1于P,Q两点,在l1上取M,N使AMB=CNA=120,BAC=120,MAB+NAC=60,ABM+MAB=60,ABM=NAC,在AMB和CNA中,AMBCNA(AAS),CN=AM,AMB=ANC=120,PMB=QNC=60,PM=BM,NQ=NC,PB=1,CQ=2,设PM=a,NQ=b,解得:,CN=AM=,AB=;(3)如图,在l3
18、上找M和N,使得BNC=AMC=60,过B作l3的垂线,交于点P,过A作l3的垂线,交于点Q,ABC是等边三角形,BC=AC,ACB=60,BCN+ACM=120,BCN+NBC=120,NBC=ACM,在BCN和CAM中,BCNCAM(AAS),CN=AM,BN=CM,PBN=90-60=30,BP=2,BN=2NP,在BPN中,即,解得:NP=,AMC=60,AQ=3,MAQ=30,AM=2QM,在AQM中,即,解得:QM=,AM=CN,PC=CN-NP=AM-NP=,在BPC中,BP2+CP2=BC2,即BC=,AB=BC=.【点睛】本题考查了全等三角形的判定和性质,平行线之间的距离,等
19、腰三角形的性质,等边三角形的性质以及勾股定理,解题的关键是利用平行线构造全等三角形,再利用全等三角形的性质以及勾股定理求解.3(1)见解析;见解析;(2)2【解析】【分析】(1)只要证明2+BAF1+BAF60即可解决问题;只要证明BFCADB,即可推出BFCADB90;(2)在BF上截取BKAF,连接AK只要证明ABKCAF,可得SABKSAFC,再证明AFFKBK,可得SABKSAFK,即可解决问题;【详解】(1)证明:如图1中,ABAC,ABC60ABC是等边三角形,BAC60,ADBN,ADB90,MBN30,BFD601+BAF2+BAF,12证明:如图2中,在RtBFD中,FBD3
20、0,BF2DF,BF2AF,BFAD,BAEFBC,ABBC,BFCADB,BFCADB90,BFCF(2)在BF上截取BKAF,连接AKBFE2+BAF,CFE4+1,CFB2+4+BAC,BFEBAC2EFC,1+42+412,ABAC,ABKCAF,34,SABKSAFC,1+32+3CFEAKB,BAC2CEF,KAF1+3AKF,AFFKBK,SABKSAFK,【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题4(1)证明见解析;(2);(3)A+C
21、=180【解析】【分析】(1)利用等式的性质得出BAD=CAE,即可得出结论;(2)同(1)的方法判断出ABDACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出BOC=60,再判断出BCFACO,得出AOC=120,进而得出AOE=60,再判断出BFCF,进而判断出OBC30,即可得出结论;(3)先判断出BDP是等边三角形,得出BD=BP,DBP=60,进而判断出ABDCBP(SAS),即可得出结论【详解】(1)证明:BAC=DAE,BAC+CAD=DAE+CAD,BAD=CAE,在ABD和ACE中, ,ABDACE;(2)如图2,ABC和ADE是等边三角形,AB=AC,AD=AE
22、,BAC=DAE=60,BAD=CAE,在ABD和ACE中, ,ABDACE,BD=CE,正确,ADB=AEC,记AD与CE的交点为G,AGE=DGO,180-ADB-DGO=180-AEC-AGE,DOE=DAE=60,BOC=60,正确,在OB上取一点F,使OF=OC,OCF是等边三角形,CF=OC,OFC=OCF=60=ACB,BCF=ACO,AB=AC,BCFACO(SAS),AOC=BFC=180-OFC=120,AOE=180-AOC=60,正确,连接AF,要使OC=OE,则有OC=CE,BD=CE,CF=OF=BD,OF=BF+OD,BFCF,OBCBCF,OBC+BCF=OFC
23、=60,OBC30,而没办法判断OBC大于30度,所以,不一定正确,即:正确的有,故答案为;(3)如图3, 延长DC至P,使DP=DB,BDC=60,BDP是等边三角形,BD=BP,DBP=60,BAC=60=DBP,ABD=CBP,AB=CB,ABDCBP(SAS),BCP=A,BCD+BCP=180,A+BCD=180【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键5,;,;,.【解析】【分析】(1)如图知,得可求出解.由图知得可求出解.(2)由图折叠知,可推出,即可求出解.由图中折叠知,可推出,即可求出解.(3)如图-1
24、、-2中分别由折叠可知,、,即可求得、.【详解】解:(1)如图中,故答案为.如图中,故答案为.(2)如图中由折叠可知,;如图中根据折叠可知,;(3)如图-1中,由折叠可知,;如图-2中,由折叠可知,.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.6(1)见解析;(2);(3)见解析【解析】【分析】(1)根据等腰三角形三线合一的性质,可得AE垂直平分BC,F为垂直平分线AE上点,即可得出结论;(2)根据(1)的结论可得AE平分BAC,BAF=20,由AB=AC=AD
25、,推出,根据外角性质可得计算即可;(3)在CF上截取CM=DF,连接AM,证明ACMADF(SAS),进而证得AFM为等边三角形即可【详解】(1)证明:AE为等腰ABC底边BC上的高线,AB=AC,AEB=AEC=90,BE=CE,AE垂直平分BE,F在AE上,;(2) ,由(1)知,AE平分BAC,故答案为:60;(3) 在CF上截取CM=DF,连接AM,由(1)可知,ABC=ACB,FBC=FCB,在ACM和ADF中,ACMADF(SAS),AFM为等边三角形,【点睛】本题考查了等腰三角形的性质,垂直平分线的性质,三角形全等的判定和性质,等边三角形的判定和性质,掌握三角形全等的判定和性质是
26、解题的关键7(1)60;AD=BE.证明见解析;(2)AEB90;AE=2CM+BE;理由见解析.【解析】【分析】(1)由条件ACB和DCE均为等边三角形,易证ACDBCE,从而得到:AD=BE,ADC=BEC由点A,D,E在同一直线上可求出ADC,从而可以求出AEB的度数由ACDBCE,可得AD=BE;(2)首先根据ACB和DCE均为等腰直角三角形,可得AC=BC,CD=CE,ACB=DCE=90,据此判断出ACD=BCE;然后根据全等三角形的判定方法,判断出ACDBCE,即可判断出BE=AD,BEC=ADC,进而判断出AEB的度数为90;根据DCE=90,CD=CE,CMDE,可得CM=D
27、M=EM,所以DE=DM+EM=2CM,据此判断出AE=BE+2CM【详解】(1)ACB=DCE,DCB=DCB,ACD=BCE,在ACD和BCE中,,ACDBCE,AD=BE,CEB=ADC=180CDE=120,AEB=CEBCED=60;AD=BE.证明:ACDBCE,AD=BE(2)AEB90;AE=2CM+BE;理由如下:ACB和DCE均为等腰直角三角形,ACB =DCE= 90,AC = BC, CD = CE, ACB =DCB =DCEDCB, 即ACD = BCE,ACDBCE,AD = BE,BEC = ADC=135AEB =BECCED =135 45= 90在等腰直角
28、DCE中,CM为斜边DE上的高,CM =DM= ME,DE = 2CMAE = DE+AD=2CM+BE【点睛】本题考查了等边三角形的性质、等腰直角三角形的性质、三角形全等的判定与性质等知识,解题时需注意运用已有的知识和经验解决相似问题8(1)100;x=y+s+t;(2)见详解【解析】【分析】(1)利用三角形的内角和定理即可解决问题;结论:x=y+s+t利用三角形内角和定理即可证明;(2)分6种情形分别求解即可解决问题【详解】解:(1)BAC=70,ABC+ACB=110,PBA=10,PCA=20,PBC+PCB=80,BPC=100,x=100,故答案为:100结论:x=y+s+t理由:
29、A+ABC+ACB=A+PBA+PCA+PBC+PCB=180,PBC+PCB+BPC=180,A+PBA+PCA=BPC,x=y+s+t(2)s、t、x、y之间所有可能的数量关系:如图1:s+x=t+y;如图2:s+y=t+x;如图3:y=x+s+t;如图4:x+y+s+t=360;如图5:t=s+x+y;如图6:s=t+x+y;【点睛】本题考查三角形的内角和定理,三角形的外角的性质等知识,解题的关键是学会用分类讨论的思想思考问题9(1)BPC122;(2)BEC;(3)BQC90A,证明见解析【解析】【分析】(1)根据三角形的内角和化为角平分线的定义;(2)根据三角形的一个外角等于与它不相
30、邻的两个内角的和,用A与1表示出2,再利用E与1表示出2,于是得到结论;(3)根据三角形的一个外角等于与它不相邻的两个内角的和以及角平分线的定义表示出EBC与ECB,然后再根据三角形的内角和定理列式整理即可得解【详解】解:(1)、分别平分和,故答案为:;(2)和分别是和的角平分线,又是的一外角,是的一外角,;(3),结论:【点睛】本题考查了三角形的外角性质与内角和定理,熟记三角形的一个外角等于与它不相邻的两个内角的和是解题的关键10(1)证明见解析;(2)DEBDCE;(3)B(1,4)【解析】【分析】(1)证明ABDCAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可;(
31、2)根据三角形内角和定理、平角的定义证明ABD=CAE,证明ABDCAE,根据全等三角形的性质得到AE=BD,AD=CE,结合图形解答即可;(3)根据AECCFB,得到CF=AE=3,BF=CE=OE-OC=4,根据坐标与图形性质解答【详解】(1)证明:BD直线m,CE直线m,ADBCEA90BAC90BADCAE90BADABD90CAEABD 在ADB和CEA中ADBCEA(AAS)AEBD,ADCEDEAEADBDCE 即:DEBDCE (2)解:数量关系:DEBDCE 理由如下:在ABD中,ABD=180-ADB-BAD,CAE=180-BAC-BAD,BDA=AEC,ABD=CAE,
32、在ABD和CAE中, ABDCAE(AAS)AE=BD,AD=CE,DE=AD+AE=BD+CE;(3)解:如图,作AEx轴于E,BFx轴于F,由(1)可知,AECCFB,CF=AE=3,BF=CE=OE-OC=4,OF=CF-OC=1,点B的坐标为B(1,4)【点睛】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键11(1)6;8;24;(2)存在时,使得ODP与ODQ的面积相等;(3)GOD+ACE=OHC,见解析【解析】【分析】(1)利用非负性即可求出a,b即可得出结论,即可求出ABC的面积;(2)先表示出OQ,OP,利用那个面积相等,建
33、立方程求解即可得出结论;(3)先判断出OAC=AOD,进而判断出OGAC,即可判断出FHC=ACE,同理FHO=GOD,即可得出结论【详解】解:(1) 解:(1),a-6=0,b-8=0,a=6,b=8,A(0,6),C(8,0);SABC=682=24,故答案为(0,6),(8,0); 6;8;24 (2) 由时, 存在时,使得ODP与ODQ的面积相等(3) )2GOA+ACE=OHC,理由如下:x轴y轴,AOC=DOC+AOD=90OAC+ACO=90又DOC=DCOOAC=AODy轴平分GODGOA=AODGOA=OACOGAC,如图,过点H作HFOG交x轴于F,HFACFHC=ACE同
34、理FHO=GOD,OGFH,GOD=FHO,GOD+ACE=FHO+FHC即GOD+ACE=OHC, 2GOA+ACE=OHCGOD+ACE=OHC【点睛】此题是三角形综合题,主要考查了非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键12(1)见解析;(2)【解析】【分析】(1)根据聪聪提供的辅助线作法进行证明,先由平行线的性质得:,再证明,可得结论;(2)根据平行线的性质和三角形的外角性质可得结论【详解】解:(1)证明:如图2,过作,交于,;(2)解:,理由如下:如图3,【点睛】本题主要考查了平行线的性质和判定以及三角形外角性质的运用,熟练掌握平行线
35、的性质和判定是解决问题的关键13(1)BDC90+;(2)BFC;(3)BMC90+【解析】【分析】(1)由三角形内角和可求ABC+ACB180,由角平分线的性质可求DBC+BCD(ABC+ACB)90,由三角形的内角和定理可求解;(2)由角平分线的性质可得FBCABC,FCEACE,由三角形的外角性质可求解;(3)由折叠的性质可得GBFC,方法同(1)可求BMC90+,即可求解.【详解】解:(1)A,ABC+ACB180,BD平分ABC,CD平分ACB,DBCABC,BCDACB, DBC+BCD(ABC+ACB)90,BDC180(DBC+BCD)90+;(2)ABC的平分线与ACE的平分
36、线交于点F,FBCABC,FCEACE,ACEA+ABC,FCEBFC+FBC,BFCA;(3)GBC的平分线与GCB的平分线交于点M,方法同(1)可得BMC90+, 将FBC以直线BC为对称轴翻折得到GBC,GBFC,BMC90+.【点睛】此题考查三角形的内角和定理,三角形的外角等于与它不相邻的两个内角的和,角平分线的性质定理,折叠的性质.14(1)25; ;(2)【解析】【分析】(1)利用外角和性质ACDABCA,OCDBOCOBC,再利用角平分线的定义进行等量代换即可;与同理可得;(2)根据题意分情况进行讨论,用到(1)的结论计算即可【详解】(1)ACDABCA,OCDBOCOBC,OB
37、、OC分别平分ABC、ACD,ACD 2OCD,ABC2OBC,2OCD2OBCA,A2BOC,A50,BOCA25,故填:25;,且平分平分(2)的角平分线与的角平分线所在的直线相交于,符合题意的情况有两种:根据(1)可知:根据(1)可知:【点睛】本题考查三角形外角和的性质、角平分线的定义,利用分类讨论的数学思想是关键15(1)2;(2)4【解析】【分析】(1)根据题意可直接求等腰直角三角形EAC的面积即可;(2)延长MN到K,使NK=GH,连接FK、FH、FM,由(1)易证,则有FK=FH,因为HM=GH+MN易证,故可求解【详解】(1)由题意知,故答案为2;(2)延长MN到K,使NK=G
38、H,连接FK、FH、FM,如图所示: FG=FN=HM=GH+MN=2cm,G=N=90,FNK=FGH=90,FH=FK,又FM=FM,HM=KM=MN+GH=MN+NK,MK=FN=2cm,【点睛】本题主要考查全等三角形的性质与判定,关键是根据截长补短法及割补法求面积的运用16(1)详见解析;(2)详见解析;,理由详见解析【解析】【分析】(1)根据等边三角形的性质得出BC=AC,CE=CD,ACB=DCE=60,进而得出BCE=ACD,判断出(SAS),即可得出结论; (2)同(1)的方法判断出(SAS),(SAS),即可得出结论; 先判断出APB=60,APC=60,在PE上取一点M,使
39、PM=PC,证明是等边三角形, 进而判断出(SAS),即可得出结论【详解】(1)证明:和都是等边三角形, BC=AC,CE=CD,ACB=DCE=60, ABC+ACE=DCE+ACE, 即BCE=ACD, (SAS), BE=AD; (2)证明:和是等边三角形, AC=BC,CD=CE,ACB=DCE=60, ACB+BCD=DCE+BCD, 即ACD=BCE, (SAS), AD=BE, 同理:(SAS), AD=CF, 即AD=BE=CF; 解:结论:PB+PC+PD=BE,理由:如图2,AD与BC的交点记作点Q,则AQC=BQP, 由知, CAD=CBE, 在中,CAD+AQC=180-ACB=120, CBE+BQP=120, 在中,APB=180-(CBE+BQP)=60, DPE=60, 同理:APC=60, CPD=120, 在PE上取一点M,使PM=PC, 是等边三角形, ,PCM=CMP=60, CME=120=CPD, 是等边三角形, CD=CE,DCE=60=PCM, PCD=MCE, (SAS),