资源描述
2022-2023学年九上数学期末模拟试卷
注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.如图,水平地面上有一面积为30cm2的灰色扇形OAB,其中OA=6cm,且OA垂直于地面.将这个扇形向右滚动(无滑动)至点B刚好接触地面为止,则在这个滚动过程中,点O移动的距离是( )
A.cm B.cm C.cm D.30cm
2.下列几何体中,主视图和左视图都为矩形的是( )
A. B.
C. D.
3.如果△ABC∽△DEF,相似比为2:1,且△DEF的面积为4,那么△ABC的面积为( )
A.1 B.4 C.8 D.16
4.如图,从点看一山坡上的电线杆,观测点的仰角是45°,向前走到达点,测得顶端点和杆底端点的仰角分别是60°和30°,则该电线杆的高度( )
A. B. C. D.
5.如图,在正方形中,绕点顺时针旋转后与重合,,,则的长度为( )
A.4 B. C.5 D.
6.用配方法解方程时,原方程应变形为( )
A. B. C. D.
7.如图是一个圆柱形输水管横截面的示意图,阴影部分为有水部分,如果水面AB的宽为8cm,水面最深的地方高度为2cm,则该输水管的半径为( )
A.3cm B.5cm C.6cm D.8cm
8.已知二次函数y=ax1+bx+c+1的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b1﹣4ac=0;③a>1;④ax1+bx+c=﹣1的根为x1=x1=﹣1;⑤若点B(﹣,y1)、C(﹣,y1)为函数图象上的两点,则y1>y1.其中正确的个数是( )
A.1 B.3 C.4 D.5
9.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是( )
A.m≥1 B.m≤1 C.m>1 D.m<1
10.如图,在四边形ABCD中,ADBC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB,若DG=3,EC=1,则DE的长为( )
A.2 B. C.2 D.
11.如图,已知⊙O的直径为4,∠ACB=45°,则AB的长为( )
A.4 B.2 C.4 D.2
12.已知在△ABC中,∠ACB=90°,AC=6cm,BC=8cm,CM是它的中线,以C为圆心,5cm为半径作⊙C,则点M与⊙C的位置关系为( )
A.点M在⊙C上 B.点M在⊙C内 C.点M在⊙C外 D.点M不在⊙C内
二、填空题(每题4分,共24分)
13.如图,AB是⊙O的直径,AC是⊙O的切线,连结OC交⊙O于点D,连结BD,∠C=30°,则∠ABD的度数是_____°.
14.一个口袋中装有2个完全相同的小球,它们分别标有数字1,2,从口袋中随机摸出一个小球记下数字后放回,摇匀后再随机摸出一个小球,则两次摸出小球的数字和为偶数的概率是 .
15.某毛绒玩具厂对一批毛绒玩具进行质量抽检,相关数据如下:
抽取的毛绒玩具数
21
51
111
211
511
1111
1511
2111
优等品的频数
19
47
91
184
462
921
1379
1846
优等品的频率
1.951
1.941
1.911
1.921
1.924
1.921
1.919
1.923
从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是__.(精确到
16.分解因式:2x2﹣8=_____________
17.在不透明的袋中装有大小和质地都相同的个红球和个白球,某学习小组做“用频率估计概率"的试验时,统计了摸到红球出现的频率并绘制了折线统计图,则白球可能有_______个.
18.如图,在中,、分别是、的中点,点在上,是的平分线,若,则的度数是________.
三、解答题(共78分)
19.(8分)如图,在的正方形网格中,网线的交点称为格点,点,,都是格点.已知每个小正方形的边长为1.
(1)画出的外接圆,并直接写出的半径是多少.
(2)连结,在网络中画出一个格点,使得是直角三角形,且点在上.
20.(8分)平面直角坐标系中有点和某一函数图象,过点作轴的垂线,交图象于点,设点,的纵坐标分别为,.如果,那么称点为图象的上位点;如果,那么称点为图象的图上点;如果,那么称点为图象的下位点.
(1)已知抛物线.
① 在点A(-1,0),B(0,-2),C(2,3)中,是抛物线的上位点的是 ;
② 如果点是直线的图上点,且为抛物线的上位点,求点的横坐标的取值范围;
(2)将直线在直线下方的部分沿直线翻折,直线的其余部分保持不变,得到一个新的图象,记作图象.⊙的圆心在轴上,半径为.如果在图象和⊙上分别存在点和点F,使得线段EF上同时存在图象的上位点,图上点和下位点,求圆心的横坐标的取值范围.
21.(8分)如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,其边长为2,点A,点C分别在轴,轴的正半轴上.函数的图象与CB交于点D,函数(为常数,)的图象经过点D,与AB交于点E,与函数的图象在第三象限内交于点F,连接AF、EF.
(1)求函数的表达式,并直接写出E、F两点的坐标.
(2)求△AEF的面积.
22.(10分)如图,在由边长为1的小正方形组成的网格中,△ABC的顶点均落在格点上.
(1)将△ABC绕点O顺时针旋转90°后,得到△A1B1C1.在网格中画出△A1B1C1;
(2)求线段OA在旋转过程中扫过的图形面积;(结果保留π)
23.(10分)已知:△ABC中,点D为边BC上一点,点E在边AC上,且∠ADE=∠B
(1) 如图1,若AB=AC,求证:;
(2) 如图2,若AD=AE,求证:;
(3) 在(2)的条件下,若∠DAC=90°,且CE=4,tan∠BAD=,则AB=____________.
24.(10分)已知抛物线经过A(0,2)、B(4,0)、C(5,-3)三点,当时,其图象如图所示.
(1)求该抛物线的解析式,并写出该抛物线的顶点坐标;
(2)求该抛物线与轴的另一个交点的坐标.
25.(12分)平面直角坐标系中,函数(x>0),y=x-1,y=x-4的图象如图所示,p(a , b)是直线上一动点,且在第一象限.过P作PM∥x轴交直线于M,过P作PN∥y轴交曲线于N.
(1)当PM=PN时,求P点坐标
(2)当PM > PN时,直接写出a的取值范围.
26.如图,AB为⊙O的直径,AC、DC为弦,∠ACD=60°,P为AB延长线上的点,∠APD=30°.
(1)求证:DP是⊙O的切线;
(2)若⊙O的半径为3cm,求图中阴影部分的面积.
参考答案
一、选择题(每题4分,共48分)
1、A
【解析】如下图,在灰色扇形OAB向右无滑动滚动过程中,点O移动的距离等于线段A1B1的长度,而A1B1的长度等于灰色扇形OAB中弧的长度,
∵S扇形=,OA=6,
∴(cm),即点O移动的距离等于:cm.
故选A.
点睛:在扇形沿直线无滑动滚动的过程中,由于圆心到圆上各点的距离都等于半径,所以此时圆心作的是平移运动,其平移的距离就等于扇形沿直线滚动的路程.
2、A
【解析】分别画出各几何体的主视图和左视图,然后进行判断.
【详解】A、主视图和左视图都为矩形的,所以A选项正确;
B、主视图和左视图都为等腰三角形,所以B选项错误;
C、主视图为矩形,左视图为圆,所以C选项错误;
D、主视图是矩形,左视图为三角形,所以D选项错误.
故选:A.
【点睛】
本题考查了简单几何体的三视图:画物体的主视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.记住常见的几何体的三视图.
3、D
【解析】试题分析:根据相似三角形面积的比等于相似比的平方解答即可.
解:∵△ABC∽△DEF,相似比为2:1,
∴△ABC和△DEF的面积比为4:1,又△DEF的面积为4,
∴△ABC的面积为1.
故选D.
考点:相似三角形的性质.
4、A
【分析】延长PQ交直线AB于点E,设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE-BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.
【详解】解:延长PQ交直线AB于点E,设PE=x.
在直角△APE中,∠PAE=45°,
则AE=PE=x;
∵∠PBE=60°
∴∠BPE=30°
在直角△BPE中,,
∵AB=AE-BE=6,
则解得:
∴
在直角△BEQ中,
故选:A
【点睛】
本题考查解直角三角形的应用-仰角俯角问题,解答本题的关键是明确题意,利用锐角三角函数和数形结合的思想解答.
5、D
【分析】先根据旋转性质及正方形的性质构造方程求正方形的边长,再利用勾股定理求值即可.
【详解】绕点顺时针旋转后与重合
四边形ABCD为正方形
在中,
故选D.
【点睛】
本题考查了全等三角形的性质、旋转的性质、正方形的性质、勾股定理,找到直角三角形运用勾股定理求值是解题的关键.
6、A
【分析】方程常数项移到右边,两边加上1变形即可得到结果.
【详解】方程移项得:x2−2x=5,
配方得:x2−2x+1=1,
即(x−1)2=1.
故选:A.
【点睛】
此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.
7、B
【分析】先过点O作OD⊥AB于点D,连接OA,由垂径定理可知AD=AB,设OA=r,则OD=r﹣2,在Rt△AOD中,利用勾股定理即可求出r的值.
【详解】解:如图所示:过点O作OD⊥AB于点D,连接OA,
∵OD⊥AB,
∴AD=AB=4cm,
设OA=r,则OD=r﹣2,
在Rt△AOD中,OA2=OD2+AD2,即r2=(r﹣2)2+42,
解得r=5cm.
∴该输水管的半径为5cm;
故选:B.
【点睛】
此题主要考查垂径定理,解题的关键是熟知垂径定理及勾股定理的运用.
8、D
【解析】根据二次函数的图象与性质即可求出答案.
【详解】解:①由抛物线的对称轴可知:,
∴,
由抛物线与轴的交点可知:,
∴,
∴,故①正确;
②抛物线与轴只有一个交点,
∴,
∴,故②正确;
③令,
∴,
∵,
∴,
∴,
∴,
∵,
∴,故③正确;
④由图象可知:令,
即的解为,
∴的根为,故④正确;
⑤∵,
∴,故⑤正确;
故选D.
【点睛】
考查二次函数的图象与性质,解题的关键是熟练运用数形结合的思想.
9、D
【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m的一元一次不等式,解之即可得出实数m的取值范围.
详解:∵方程有两个不相同的实数根,
∴
解得:m<1.
故选D.
点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.
10、C
【分析】根据直角三角形斜边上中线的性质可得DG=AG,根据等腰三角形的性质,得到,由三角形外角的性质,可得,再根据平行线的性质和等量关系可得,根据等腰三角形的性质得到CD=DG,最后由勾股定理解题即可.
【详解】
为AF的中点,即DG为斜边AF的中线,
设
在中,
根据勾股定理得,
故选:C.
【点睛】
本题考查勾股定理、直角三角形斜边上的中线、等腰三角形的性质、平行线的性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.
11、D
【分析】连接OA、OB,根据同弧所对的圆周角是圆心角的一半,即可求出∠AOB=90°,再根据等腰直角三角形的性质即可求出AB的长.
【详解】连接OA、OB,如图,
∵∠AOB=2∠ACB=2×45°=90°,
∴△AOB为等腰直角三角形,
∴AB=OA=2.
故选:D.
【点睛】
此题考查的是圆周角定理和等腰直角三角形的性质,掌握同弧所对的圆周角是圆心角的一半是解决此题的关键.
12、A
【解析】根据题意可求得CM的长,再根据点和圆的位置关系判断即可.
【详解】如图,
∵由勾股定理得AB==10cm,
∵CM是AB的中线,
∴CM=5cm,
∴d=r,
所以点M在⊙C上,
故选A.
【点睛】
本题考查了点和圆的位置关系,解决的根据是点在圆上⇔圆心到点的距离=圆的半径.
二、填空题(每题4分,共24分)
13、30°
【分析】根据切线的性质求出∠OAC,结合∠C=30°可求出∠AOC,根据等腰三角形性质求出∠B=∠BDO,根据三角形外角性质求出即可.
【详解】解:∵AC是⊙O的切线,
∴∠OAC=90°,
∵∠C=30°,
∴∠AOC=90°﹣30°=60°,
∵OB=OD,
∴∠ABD=∠BDO,
∵∠ABD+∠BDO=∠AOC,
∴∠ABD=AOC=30°,
故答案为:30°.
【点睛】
本题考查了切线的性质,三角形外角性质,三角形内角和定理,等腰三角形性质的应用,解此题的关键是求出∠AOC的度数.
14、.
【解析】试题分析:如图所示,∵共有4种结果,两次摸出小球的数字和为偶数的有2次,∴两次摸出小球的数字和为偶数的概率==.故答案为.
考点:列表法与树状图法.
15、1.92
【分析】由表格中的数据可知优等品的频率在1.92左右摆动,利用频率估计概率即可求得答案.
【详解】观察可知优等品的频率在1.92左右,
所以从这批玩具中,任意抽取的一个毛绒玩具是优等品的概率的估计值是1.92,
故答案为:1.92.
【点睛】
本题考查了利用频率估计概率,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,由此可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率的近似值,随着实验次数的增多,值越来越精确.
16、2(x+2)(x﹣2)
【分析】先提公因式,再运用平方差公式.
【详解】2x2﹣8,
=2(x2﹣4),
=2(x+2)(x﹣2).
【点睛】
考核知识点:因式分解.掌握基本方法是关键.
17、6
【分析】从表中的统计数据可知,摸到红球的频率稳定在0.33左右,根据红球的概率公式得到相应方程求解即可;
【详解】由统计图,知摸到红球的频率稳定在0.33左右,
∴,
经检验,n=6是方程的根,
故答案为6.
【点睛】
此题主要考查频率与概率的相关计算,熟练掌握,即可解题.
18、100°
【分析】利用三角形中位线定理可证明DE//BC,再根据两直线平行,同位角相等可求得∠AED,再根据角平分线的定义可求得∠DEF,最后根据两直线平行,同旁内角互补可求得∠EFB的度数.
【详解】解:∵在△ABC中,D、E分别是AB、AC的中点,
∴DE是△ABC的中位线,
∴DE∥BC,
∴∠AED=∠C=80°,∠DEF+∠EFB=180°,
又ED是∠AEF的角平分线,
∴∠DEF=∠AED=80°,
∴∠EFB=180°-∠DEF=100°.
故答案为:100°.
【点睛】
本题考查三角形中位线定理,平行线的性质定理,角平分线的有关证明.能得出DE是ABC中位线,并根据三角形的中位线平行于第三边得出DE∥BC是解题关键.
三、解答题(共78分)
19、(1)作图见解析,半径为;(2)作图见解析
【分析】(1)作AB和BC的垂直平分线,交点即为点O的位置,在网格中应用勾股定理即可求得半径;
(2)只能是或,直接利用网格作图即可.
【详解】解:(1)作AB和BC的垂直平分线,交点即为点O,如图:
,
根据勾股定理可得半径为;
(2)当是直角三角形时,且点在上,
只能是或,利用网格作图如下:
.
【点睛】
本题考查尺规作图、确定圆的条件,掌握三角形外接圆圆心是三边线段垂直平分线的交点是解题的关键.
20、(1)①A,C.②;(2)或.
【分析】(1)①分别将A,B,C三个点的横坐标代入抛物线的解析式中,然后比较求出的函数值与各自点的纵坐标,最后依据上位点的定义判断即可得出答案;
②找到直线与抛物线的两个交点,即可确定点的横坐标的取值范围
(2)当圆与两条直线的反向延长线相切时,为临界点,临界点的两边都满足要求,数形结合求出临界点时圆心的横坐标,即可得出答案.
【详解】解:(1)①当时,,所以A点是抛物线的上位点;
当时,,所以B点不是抛物线的上位点;
当时,,所以C点是抛物线的上位点;
故答案为,.
②∵点是直线的图上点,∴点在上.
又∵点是的上位点,
∴点在与的交点,之间运动.
∵
∴
∴点(,),(,).
∴.
(2)如图,当圆与两条直线的反向延长线相切时,为临界点,临界点的两边都满足要求.
将沿直线翻折后的直线的解析式为
当时,,∴A(-3,0),OA=3
当时,∴C(0,3),OC=3
∴
∵
∴
∴
∵A(-3,0)
∴
同理可得
∴线段EF上同时存在图象的上位点,图上点和下位点,圆心的横坐标的取值范围为或.
【点睛】
本题主要考查二次函数与一次函数的综合,掌握上位点,图上点和下位点的概念是解题的关键.
21、(1),E(2,1),F(-1,-2);(2).
【分析】(1)先得到点D的坐标,再求出k的值即可确定反比例函数解析式;
(2)过点F作FG⊥AB,与BA的延长线交于点G.由E、F两点的坐标,得到AE=1,FG=2-(-1)=3,从而得到△AEF的面积.
【详解】解:(1)∵正方形OABC的边长为2,∴点D的纵坐标为2,即y=2,
将y=2代入y=2x,得到x=1,
∴点D的坐标为(1,2).
∵函数的图象经过点D,∴,∴k=2,
∴函数的表达式为.
(2)过点F作FG⊥AB,与BA的延长线交于点G.
根据反比例函数图象的对称性可知:点D与点F关于原点O对称
∴点F的坐标分别为(-1,-2),
把x=2代入得,y=1;
∴点E的坐标(2,1);
∴AE=1,FG=2-(-1)=3,
∴△AEF的面积为:AE•FG=
.
22、 (1)见解析; (2)扫过的图形面积为2π.
【解析】(1)先确定A、B、C三点分别绕O点旋转90°后的点的位置,再顺次连接即可得到所求图形;
(2)先运用勾股定理求解出OA的长度,再求以OA为半径、圆心角为90°的扇形面积即可.
【详解】(1)如图,先确定A、B、C三点分别绕O点旋转90°后的点A1、B1、C1,再顺次连接即可得到所求图形,△A1B1C1即为所求三角形;
(2)由勾股定理可知OA=,
线段OA在旋转过程中扫过的图形为以OA为半径,∠AOA1为圆心角的扇形,
则S扇形OAA1=
答:扫过的图形面积为2π.
【点睛】
本题结合网格线考查了旋转作图以及扇形面积公式,熟记相关公式是解题的关键.
23、
【解析】分析:(1)
∠ADE=∠B,可得 根据等边对等角得到
△BAD∽△CDE,根据相似三角形的性质即可证明.
(2) 在线段AB上截取DB=DF,证明△AFD∽△DEC,根据相似三角形的性质即可证明.
(3) 过点E作EF⊥BC于F,根据tan∠BAD=tan∠EDF=,设EF=x,DF=2x,则DE=,证明△EDC∽△GEC,求得,根据CE2=CD·CG,求出CD=,
根据△BAD∽△GDE,即可求出的长度.
详解:(1)
∠ADE=∠B,可得
∵△BAD∽△CDE,
∴;
(2) 在线段AB上截取DB=DF
∴∠B=∠DFB=∠ADE
∵AD=AE ∴∠ADE=∠AED ∴∠AED=∠DFB,
同理:∵∠BAD+∠BDA=180°-∠B,∠BDA+∠CDE=180°-∠ADE
∴∠BAD=∠CDE
∵∠AFD=180°-∠DFB,∠DEC=180°-∠AED
∴∠AFD=∠DEC ,
∴△AFD∽△DEC,
∴
(3) 过点E作EF⊥BC于F
∵∠ADE=∠B=45°
∴∠BDA+∠BAD=135°,∠BDA+∠EDC=135°
∴∠BAD=∠EBC(三等角模型中,这个始终存在)
∵tan∠BAD=tan∠EDF=
∴设EF=x,DF=2x,则DE=,
在DC上取一点G,使∠EGD=45°,
∴△BAD∽△GDE,
∵AD=AE∴∠AED=∠ADE=45°,
∵∠AED=∠EDC+∠C=45°,∠C+∠CEG=45°,∴∠EDC=∠GEC,
∴△EDC∽△GEC,∴ ∴,
又CE2=CD·CG,
∴42=CD·,CD=,
∴,解得
∵△BAD∽△GDE
∴,
∴.
点睛:属于相似三角形的综合题,考查相似三角形的判定于性质,掌握相似三角形的判定方法是解题的关键.
24、(1),顶点坐标为;(2)图象与的另一个交点的坐标为(-1,0).
【分析】(1)把A、B、C三点的坐标代入抛物线,解方程组即可;将抛物线化成顶点式即可得出顶点坐标;
(2)令y=0,得到方程,解方程即可.
【详解】解:(1)依题意,得,
解得,
抛物线的解析式为,
顶点坐标为.
(2)令,
解得:,
图象与的另一个交点的坐标为(-1,0).
【点睛】
本题考查了抛物线的解析式、与x轴的交点:掌握待定系数法求函数解析式,和把求二次函数(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程是解题的关键.
25、(1)(2,1)或(,);(2)
【分析】(1)根据直线与直线的特征,可以判断为平行四边形,且,再根据坐标特征得到等式=3 ,即可求解;
(2)根据第(1)小题的结果结合图象即可得到答案.
【详解】(1)∵直线与轴交点,直线与轴交点 ,
∴,
∵直线 与直线平行,
且∥轴,
∴为平行四边形,
∴,
∵∥轴, 在的图象上,
∴ ,
∵在直线上 ,
∴ ,
∵ ,
∴=3 ,
解得:或,
(2)如图,
∵或, ,
当点在直线和区间运动时,,
∴
【点睛】
本题考查了一次函数与反比例函数的交点问题,利用函数图象性质解决问题是本题的关键.
26、(1)证明见解析;(2).
【分析】(1)连接OD,求出∠AOD,求出∠DOB,求出∠ODP,根据切线判定推出即可.
(2)求出OP、DP长,分别求出扇形DOB和△ODP面积,即可求出答案.
【详解】解:(1)证明:连接OD,
∵∠ACD=60°,
∴由圆周角定理得:∠AOD=2∠ACD=120°.
∴∠DOP=180°﹣120°=60°.
∵∠APD=30°,
∴∠ODP=180°﹣30°﹣60°=90°.
∴OD⊥DP.
∵OD为半径,
∴DP是⊙O切线.
(2)∵∠ODP=90°,∠P=30°,OD=3cm,
∴OP=6cm,由勾股定理得:DP=3cm.
∴图中阴影部分的面积
展开阅读全文