收藏 分销(赏)

人教版初一数学下册期末几何压轴题试题(带答案)(一).doc

上传人:人****来 文档编号:5197884 上传时间:2024-10-28 格式:DOC 页数:43 大小:1.80MB
下载 相关 举报
人教版初一数学下册期末几何压轴题试题(带答案)(一).doc_第1页
第1页 / 共43页
人教版初一数学下册期末几何压轴题试题(带答案)(一).doc_第2页
第2页 / 共43页
人教版初一数学下册期末几何压轴题试题(带答案)(一).doc_第3页
第3页 / 共43页
人教版初一数学下册期末几何压轴题试题(带答案)(一).doc_第4页
第4页 / 共43页
人教版初一数学下册期末几何压轴题试题(带答案)(一).doc_第5页
第5页 / 共43页
点击查看更多>>
资源描述

1、一、解答题1如图,A点的坐标为(0,3),B点的坐标为(3,0),D为x轴上的一个动点且不与B,O重合,将线段AD绕点A逆时针旋转90得线段AE,使得AEAD,且AEAD,连接BE交y轴于点M(1)如图,当点D在线段OB的延长线上时,若D点的坐标为(5,0),求点E的坐标求证:M为BE的中点探究:若在点D运动的过程中,的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由(2)请直接写出三条线段AO,DO,AM之间的数量关系(不需要说明理由)2如图,已知,是的平分线(1)若平分,求的度数;(2)若在的内部,且于,求证:平分;(3)在(2)的条件下,过点作,分别交、于点、,绕着点旋转,但与

2、、始终有交点,问:的值是否发生变化?若不变,求其值;若变化,求其变化范围3综合与实践背景阅读:在同一平面内,两条不重合的直线的位置关系有相交、平行,若两条不重合的直线只有一个公共点,我们就说这两条直线相交,若两条直线不相交,我们就说这两条直线互相平行两条直线的位置关系的性质和判定是几何的重要知识,是初中阶段几何合情推理的基础已知:AMCN,点B为平面内一点,ABBC于B问题解决:(1)如图1,直接写出A和C之间的数量关系;(2)如图2,过点B作BDAM于点D,求证:ABDC;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分DBC,BE平分ABD,若FCB+NC

3、F180,BFC3DBE,则EBC 4汛期即将来临,防汛指挥部在某水域一危险地带两岸各安置了一探照灯,便于夜间查看河水及两岸河堤的情况如图1,灯射出的光束自顺时针旋转至便立即回转,灯射出的光束自顺时针旋转至便立即回转,两灯不停交叉照射巡视若灯射出的光束转动的速度是/秒,灯射出的光束转动的速度是/秒,且、满足假定这一带水域两岸河堤是平行的,即,且(1)求、的值;(2)如图2,两灯同时转动,在灯射出的光束到达之前,若两灯射出的光束交于点,过作交于点,若,求的度数;(3)若灯射线先转动30秒,灯射出的光束才开始转动,在灯射出的光束到达之前,灯转动几秒,两灯的光束互相平行?5如图,直线与、分别交于点、

4、,点在直线上,过点作,垂足为点(1)如图1,求证:;(2)若点在线段上(不与、重合),连接,和的平分线交于点请在图2中补全图形,猜想并证明与的数量关系; 6已知:直线ABCD,直线MN分别交AB、CD于点E、F,作射线EG平分BEF交CD于G,过点F作FHMN交EG于H(1)当点H在线段EG上时,如图1当BEG时,则HFG 猜想并证明:BEG与HFG之间的数量关系(2)当点H在线段EG的延长线上时,请先在图2中补全图形,猜想并证明:BEG与HFG之间的数量关系7(概念学习)规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222,(3)(3)(3)(3)等类比有理数的乘方,我们把2

5、22记作2,读作“2的圈3次方”,(3)(3)(3)(3)记作(3),读作“3的圈4次方”,一般地,把n个a(a0)记作a,读作“a的圈n次方”(初步探究)(1)直接写出计算结果:2 ,() ;(深入思考)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式(3) ;5 ;() (2)想一想:将一个非零有理数a的圈n次方写成乘方的形式等于 ;8小学的时候我们已经学过分数的加减法法则:“同分母分数相加减,分母不变,分子相加减;异分母分数相加减,先通分,转化为同分母分数,再加减

6、”如:,反之,这个式子仍然成立,即:.(1)问题发现观察下列等式:,猜想并写出第个式子的结果: (直接写出结果,不说明理由)(2)类比探究将(1)中的的三个等式左右两边分别相加得:,类比该问题的做法,请直接写出下列各式的结果: ; ;(3)拓展延伸计算:9阅读材料:求的值解:设,将等式的两边同乘以2,得,用得,即即请仿照此法计算:(1)请直接填写的值为_;(2)求值;(3)请直接写出的值10阅读下面文字:对于可以如下计算:原式上面这种方法叫拆项法,你看懂了吗?仿照上面的方法,计算:(1)(2)11先阅读然后解答提出的问题:设a、b是有理数,且满足,求ba的值解:由题意得,因为a、b都是有理数,

7、所以a3,b+2也是有理数,由于是无理数,所以a-3=0,b+2=0,所以a=3,b=2, 所以问题:设x、y都是有理数,且满足,求x+y的值12观察下列各式:;根据上面的等式所反映的规律,(1)填空:_;_;(2)计算:13如图,已知点,点,且,满足关系式(1)求点、的坐标;(2)如图1,点是线段上的动点,轴于点,轴于点,轴于点,连接、试探究,之间的数量关系;(3)如图2,线段以每秒2个单位长度的速度向左水平移动到线段若线段交轴于点,当三角形和三角形的面积相等时,求移动时间和点的坐标14综合与实践课上,同学们以“一个直角三角形和两条平行线”为背景开展数学活动,如图,已知两直线,且是直角三角形

8、,操作发现:(1)如图1若,求的度数;(2)如图2,若的度数不确定,同学们把直线向上平移,并把的位置改变,发现,请说明理由(3)如图3,若A=30,平分,此时发现与又存在新的数量关系,请写出与的数量关系并说明理由15如图,在平面直角坐标系中,四边形各顶点的坐标分别为,现将四边形经过平移后得到四边形,点的对应点的坐标为(1)请直接写点、的坐标;(2)求四边形与四边形重叠部分的面积;(3)在轴上是否存在一点,连接、,使,若存在这样一点,求出点的坐标;若不存在,请说明理由16我们定义,关于同一个未知数的不等式和,若的解都是的解,则称与存在“雅含”关系,且不等式称为不等式的“子式”如,满足的解都是的解

9、,所以与存在“雅含”关系,是的“子式”(1)若关于的不等式,请问与是否存在“雅含”关系,若存在,请说明谁是谁的“子式”;(2)已知关于的不等式,若与存在“雅含”关系,且是的“子式”,求的取值范围;(3)已知,且为整数,关于的不等式,请分析是否存在,使得与存在“雅含”关系,且是的“子式”,若存在,请求出的值,若不存在,请说明理由17如图,点A(1,n),B(n,1),我们定义:将点A向下平移1个单位,再向右平移1个单位,同时点B向上平移1个单位,再向左平移1个单位称为一次操作,此时平移后的两点记为A1,B1,t次操作后两点记为At,Bt(1)直接写出A1,B1,At,Bt的坐标(用含n、t的式子

10、表示);(2)以下判断正确的是A经过n次操作,点A,点B位置互换B经过(n1)次操作,点A,点B位置互换C经过2n次操作,点A,点B位置互换D不管几次操作,点A,点B位置都不可能互换(3)t为何值时,At,B两点位置距离最近?18如图1,以直角的直角顶点为原点,以,所在直线为轴和轴建立平面直角坐标系,点,并且满足(1)直接写出点,点的坐标;(2)如图1,坐标轴上有两动点,同时出发,点从点出发沿轴负方向以每秒2个单位长度的速度匀速运动,点从点出发沿轴正方向以每秒个单位长度的速度匀速运动,当点到达点整个运动随之结束;线段的中点的坐标是,设运动时间为秒是否存在,使得与的面积相等?若存在,求出的值;若

11、不存在,说明理由;(3)如图2,在(2)的条件下,若,点是第二象限中一点,并且平分,点是线段上一动点,连接交于点,当点在上运动的过程中,探究,之间的数量关系,直接写出结论19阅读下列材料,解答下面的问题:我们知道方程有无数个解,但在实际生活中我们往往只需求出其正整数解例:由,得:,(x、y为正整数),则有又为正整数,则为正整数由2与3互质,可知:x为3的倍数,从而x=3,代入2x+3y=12的正整数解为问题:(1)请你写出方程的一组正整数解:.(2)若为自然数,则满足条件的x值为.(3)七年级某班为了奖励学习进步的学生,购买了单价为3元的笔记本与单价为5元的钢笔两种奖品,共花费35元,问有几种

12、购买方案?20某公园的门票价格如下表所示:某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人如果两个班都以班为单位分别购票,则一共应付 1172 元,如 果两个班联合起来,作为一个团体购票,则需付 1078 元 (1)列方程求出两个班各有多少学生;(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮 他们买票呢?请给出最省钱的方案21为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答:自来水销售价格每户每月用水量单位:元/

13、吨15吨及以下超过15吨但不超过25吨的部分超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费_元;(用,的代数式表示)(2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求,的值(3)在第(2)题的条件下,若交水费76.5元,求本月用水量(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的,的值分别上调了整数角钱(没超过1元),其他都没变”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况22阅读下列文字,请仔细体会其中的数学思想(1)解方程组

14、,我们利用加减消元法,很快可以求得此方程组的解为 ;(2)如何解方程组呢?我们可以把m+5,n+3看成一个整体,设m+5x,n+3y,很快可以求出原方程组的解为 ; (3)由此请你解决下列问题:若关于m,n的方程组与有相同的解,求a、b的值23如图,在平面直角坐标系中,点为坐标原点,点的坐标为,点的坐标为,其中是二元一次方程组的解,过点作轴的平行线交轴于点(1)求点的坐标;(2)动点从点出发,以每秒个单位长度的速度沿射线的方向运动,连接,设点的运动时间为秒,三角形的面积为,请用含的式子表示(不用写出相应的的取值范围);(3)在(2)的条件下,在动点从点出发的同时,动点从点出发以每秒个单位长度的

15、速度沿线段的方向运动过点作直线的垂线,点为垂足;过点作直线的垂线,点为垂足当时,求的值24定义:如果一个两位数a的十位数字为m,个位数字为n,且、,那么这个两位数叫做“互异数”将一个“互异数”的十位数字与个位数字对调后得到一个新的两位数,把这个新两位数与原两位数的和与11的商记为例如:,对调个位数字与十位数字得到新两位数41,新两位数与原两位数的和为,和与11的商为,所以根据以上定义,解答下列问题:(1)填空:下列两位数:20,21,22中,“互异数”为_;计算:_;_;(m、n分别为一个两位数的十位数字与个位数字)(2)如果一个“互异数”b的十位数字是x,个位数字是y,且;另一个“互异数”c

16、的十位数字是,个位数字是,且,请求出“互异数”b和c;(3)如果一个“互异数”d的十位数字是x,个位数字是,另一个“互异数”e的十位数字是,个位数字是3,且满足,请直接写出满足条件的所有x的值_;(4)如果一个“互异数”f的十位数字是,个位数字是x,且满足的互异数有且仅有3个,则t的取值范围_25如图所示,在平面直角坐标系中,点A,的坐标为,其中,满足,(1)求,的值;(2)若在轴上,且,求点坐标;(3)如果在第二象限内有一点,在什么取值范围时,的面积不大于的面积?求出在符合条件下,面积最大值时点的坐标26请阅读求绝对值不等式和的解的过程对于绝对值不等式,从图1的数轴上看:大于而小于的数的绝对

17、值小于,所以的解为;对于绝对值不等式,从图2的数轴上看:小于或大于的数的绝对值大于,所以的解为或(1)求绝对值不等式的解(2)已知绝对值不等式的解为,求的值(3)已知关于,的二元一次方程组的解满足,其中是负整数,求的值27某地葡萄丰收,准备将已经采摘下来的11400公斤葡萄运送杭州,现有甲、乙、丙三种车型共选择,每辆车运载能力和运费如表表示(假设每辆车均满载)车型甲乙丙汽车运载量(公斤/辆)600800900汽车运费(元/辆)500600700(1)若全部葡萄都用甲、乙两种车型来运,需运费8700元,则需甲、乙两种车型各几辆?(2)为了节省运费,现打算用甲、乙、丙三种车型都参与运送,已知它们的

18、总辆数为15辆,你能分别求出这三种车型的辆数吗?怎样安排运费最省?28阅读下列材料: 我们知道的几何意义是在数轴上数对应的点与原点的距离,即,也就是说,表示在数轴上数与数对应的点之间的距离; 例 1解方程,因为在数轴上到原点的距离为的点对应的数为,所以方程的解为 例 2解不等式,在数轴上找出的解(如图),因为在数轴上到对应的点的距离等于的点对应的数为或,所以方程的解为或,因此不等式的解集为或参考阅读材料,解答下列问题: (1)方程的解为 ; (2)解不等式:; (3)解不等式:29在平面直角坐标系中,已知线段,点的坐标为,点的坐标为,如图1所示.(1)平移线段到线段,使点的对应点为,点的对应点

19、为,若点的坐标为,求点的坐标; (2)平移线段到线段,使点在轴的正半轴上,点在第二象限内(与对应, 与对应),连接如图2所示.若表示BCD的面积),求点、的坐标; (3)在(2)的条件下,在轴上是否存在一点,使表示PCD的面积)?若存在,求出点的坐标; 若不存在,请说明理由.30对,定义一种新的运算,规定:(其中)(1)若已知,则_(2)已知,求,的值;(3)在(2)问的基础上,若关于正数的不等式组恰好有2个整数解,求的取值范围【参考答案】*试卷处理标记,请不要删除一、解答题1(1)E(3,2)见解析;,理由见解析;(2)OD+OA2AM或OAOD2AM【分析】(1)过点E作EHy轴于H证明D

20、OAAHE(AAS)可得结论证明BOMEHM(AAS)可得结论是定值,证明BOMEHM可得结论(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论【详解】解:(1)过点E作EHy轴于HA(0,3),B(3,0),D(5,0),OAOB3,OD5,AODAHEDAE90,DAO+EAH90,EAH+AEH90,DAOAEH,DOAAHE(AAS),AHOD5,EHOA3,OHAHOA2,E(3,2)EHy轴,EHOBOH90,BMOEMH,OBEH3,BOMEHM(AAS),BMEM结论:理由:DOAAHE,ODAH,OAOB,BDOH,BOME

21、HM,OMMH,OMOHBD(2)结论:OA+OD2AM或OAOD2AM理由:当点D在点B左侧时,BOMEHM,DOAAHEOM=MH,OD=AHOH=2OM,ODOB=AHOABD=OHBD2OM,ODOA2(AMAO),OD+OA2AM当点D在点B右侧时,过点E作EHy轴于点HAODAHEDAE90,DAO+EAH90,EAH+AEH90,DAOAEH,AD=AEDOAAHE(AAS),EH=AO=3=OB,OD=AHEHOBOH90,BMOEMH,OBEH3,BOMEHM(AAS),OMMHOAOD= OAAH=OH=OMMH=2MH=2(AMAH)=2(AMOD)整理可得OAOD2AM

22、综上:OA+OD2AM或OAOD2AM【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键2(1)90;(2)见解析;(3)不变,180【分析】(1)根据邻补角的定义及角平分线的定义即可得解;(2)根据垂直的定义及邻补角的定义、角平分线的定义即可得解;(3),过,分别作,根据平行线的性质及平角的定义即可得解【详解】解(1),分别平分和,;(2),即,是的平分线,又,又在的内部,平分;(3)如图,不发生变化,过,分别作,则有,不变【点睛】此题考查了平行线的性质,熟记平行线的性质及作出合理的辅助线是

23、解题的关键3(1);(2)见解析;(3)105【分析】(1)通过平行线性质和直角三角形内角关系即可求解(2)过点B作BGDM,根据平行线找角的联系即可求解(3)利用(2)的结论,结合角平分线性质即可求解【详解】解:(1)如图1,设AM与BC交于点O,AMCN,CAOB,ABBC,ABC90,AAOB90,AC90,故答案为:AC90;(2)证明:如图2,过点B作BGDM,BDAM,DBBG,DBG90,ABDABG90,ABBC,CBGABG90,ABDCBG,AMCN,CCBG,ABDC; (3)如图3,过点B作BGDM,BF平分DBC,BE平分ABD,DBFCBF,DBEABE,由(2)知

24、ABDCBG,ABFGBF,设DBE,ABF,则ABE,ABD2CBG,GBFAFB,BFC3DBE3,AFC3,AFCNCF180,FCBNCF180,FCBAFC3,BCF中,由CBFBFCBCF180得:233180,ABBC,290,15,ABE15,EBCABEABC1590105故答案为:105【点睛】本题考查平行线性质,画辅助线,找到角的和差倍分关系是求解本题的关键4(1),;(2)30;(3)15秒或82.5秒【分析】(1)解出式子即可;(2)根据,用含t的式子表示出,根据(2)中给出的条件得出方程式 ,求出 t的值,进而求出的度数;(3)根据灯B的要求,t150,在这个时间段

25、内A可以转3次,分情况讨论【详解】解:(1)又,;(2)设灯转动时间为秒,如图,作,而 ,(3)设灯转动秒,两灯的光束互相平行依题意得当时,两河岸平行,所以两光线平行,所以所以,即:,解得;当时,两光束平行,所以两河岸平行,所以所以,解得;当时,图大概如所示,解得(不合题意)综上所述,当秒或82.5秒时,两灯的光束互相平行【点睛】这道题考察的是平行线的性质和一元一次方程的应用根据平行线的性质找到对应角列出方程是解题的关键5(1)证明见解析;(2)补图见解析;当点在上时,;当点在上时,【分析】(1)过点作,根据平行线的性质即可求解;(2)分两种情况:当点在上,当点在上,再过点作即可求解【详解】(

26、1)证明:如图,过点作, ,(2)补全图形如图2、图3,猜想:或证明:过点作 , ,平分,如图3,当点在上时,平分,即如图2,当点在上时,平分,即【点睛】本题考查了平行线的基本性质、角平分线的基本性质及角的运算,解题的关键是准确作出平行线,找出角与角之间的数量关系6(1)18;2BEG+HFG=90,证明见解析;(2)2BEG-HFG=90证明见解析部【分析】(1)证明2BEG+HFG=90,可得结论利用平行线的性质证明即可(2)如图2中,结论:2BEG-HFG=90利用平行线的性质证明即可【详解】解:(1)EG平分BEF,BEG=FEG,FHEF,EFH=90,ABCD,BEF+EFG=18

27、0,2BEG+90+HFG=180,2BEG+HFG=90,BEG=36,HFG=18故答案为:18结论:2BEG+HFG=90理由:EG平分BEF,BEG=FEG,FHEF,EFH=90,ABCD,BEF+EFG=180,2BEG+90+HFG=180,2BEG+HFG=90(2)如图2中,结论:2BEG-HFG=90理由:EG平分BEF,BEG=FEG,FHEF,EFH=90,ABCD,BEF+EFG=180,2BEG+90-HFG=180,2BEG-HFG=90【点睛】本题考查平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握基本知识,属于中考常考题型7初步探究:(1),-8;深入

28、思考:(1)()2,()4,;(2)【分析】初步探究:(1)分别按公式进行计算即可;深入思考:(1)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;(2)结果前两个数相除为1,第三个数及后面的数变为,则;【详解】解:初步探究:(1)2=222=, ;深入思考:(1)(-3)=(-3)(-3)(-3)(-3)=1()2=()2;5=555555=()4;同理可得:();(2)【点睛】本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意

29、分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序8(1) ;(2);(3) 【分析】(1)根据题目中的式子可以写出第n个式子的结果;(2)根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值;根据题目中的式子的特点和(1)中的结果,可以求得所求式子的值;(3)根据题目中式子的特点,可以求得所求式子的值【详解】解:(1)由题目中的式子可得,故答案为:;(2),故答案为:;,故答案为:;(3)【点睛】本题考查数字的变化类、有理数的混合运算,解答本题的关键是明确题意,发现题目中式子的变化特点,求出所求式子的值9(1)15;(2);(3)【分析】(1)先计算乘方,即可求出

30、答案;(2)根据题目中的运算法则进行计算,即可求出答案;(3)根据题目中的运算法则进行计算,即可求出答案;【详解】解:(1);故答案为:15;(2)设,把等式两边同时乘以5,得,由,得:,;(3)设,把等式乘以10,得:,把+,得:,【点睛】本题考查了数字的变化规律,熟练掌握运算法则,熟练运用有理数乘法,以及运用消项的思想是解题的关键10(1)(2)【分析】(1)根据例子将每项的整数部分相加,分数部分相加即可解答;(2)根据例子将每项的整数部分相加,分数部分相加即可解答.【详解】(1)(2)原式【点睛】此题考察新计算方法,正确理解题意是解题的关键,根据例子即可仿照计算.117或-1.【分析】根

31、据题目中给出的方法,对所求式子进行变形,求出x、y的值,进而可求x+y的值.【详解】解:,=0,=0x=4,y=3当x=4时,x+y=4+3=7当x=-4时,x+y=-4+3=-1x+y的值是7或-1.【点睛】本题考查实数的运算,解题的关键是弄清题中给出的解答方法,然后运用类比的思想进行解答.12(1);(2).【分析】(1)根据已知数据得出规律,进而求出即可;(2)利用规律拆分,再进一步交错约分得出答案即可【详解】解:(1);(2)=.【点睛】此题主要考查了实数运算中的规律探索,根据已知运算得出数字之间的变化规律是解决问题的关键13(1);(2);(3),点C的坐标为【分析】(1)由题意易得

32、,然后可求a、b的值,进而问题可求解;(2)由(1)及题意易得,然后根据建立方程求解即可;(3)分别过点作轴于点P,轴于点Q,由题意易得,然后可得,进而可求t的值,最后根据(2)可得三角形的面积为3,则问题可求解【详解】解:(1),点,点;(2)由(1)可得点,点,轴于点,轴于点,轴于点,且,化简得;(3)分别过点作轴于点P,轴于点Q,如图所示:线段以每秒2个单位长度的速度向左水平移动到线段,时间为,三角形和三角形的面积相等,解得:,由(2)可得三角形的面积为,三角形的面积为3,即,【点睛】本题主要考查图形与坐标、算术平方根与偶次幂的非负性及等积法,熟练掌握图形与坐标、算术平方根与偶次幂的非负

33、性及等积法是解题的关键14(1)42;(2)见解析;(3)1=2,理由见解析【分析】(1)由平角定义求出3=42,再由平行线的性质即可得出答案;(2)过点B作BDa由平行线的性质得2+ABD=180,1=DBC,则ABD=ABC-DBC=60-1,进而得出结论;(3)过点C作CPa,由角平分线定义得CAM=BAC=30,BAM=2BAC=60,由平行线的性质得1=BAM=60,PCA=CAM=30,2=BCP=60,即可得出结论【详解】解:(1)1=48,BCA=90,3=180-BCA-1=180-90-48=42,ab,2=3=42;(2)理由如下:过点B作BDa如图2所示:则2+ABD=

34、180,ab,bBD,1=DBC,ABD=ABC-DBC=60-1,2+60-1=180,2-1=120;(3)1=2,理由如下:过点C作CPa,如图3所示:AC平分BAMCAM=BAC=30,BAM=2BAC=60,又ab,CPb,1=BAM=60,PCA=CAM=30,BCP=BCA-PCA=90-30=60,又CPa,2=BCP=60,1=2【点睛】本题是三角形综合题目,考查了平移的性质、直角三角形的性质、平行线的判定与性质、角平分线定义、平角的定义等知识;本题综合性强,熟练掌握平移的性质和平行线的性质是解题的关键15(1);(2);(3)存在,或【分析】(1)先确定平移的规则,然后根据

35、平移的规则,求出点的坐标即可;(2)由平移的性质可知,重叠部分为平行四边形,且底边长为3,高为2,即可求出面积;(3)设点的坐标为,先求出平行四边形ABCD的面积,然后利用三角形的面积公式,即可求出b的值【详解】解:(1),平移的规则为:向右平移2个单位,向上平移一个单位;,;(2)如图,延长交x轴于点E,过点做由平移可知,重叠部分为平行四边形,高为2, 重叠部分的面积为 (3)存在;设点的坐标为,点的坐标为或【点睛】本题考查了平移的性质,平行四边形的性质,坐标与图形,以及求阴影部分的面积,解题的关键是熟练掌握平移的性质进行解题16(1)A与B存在“雅含”关系,B是A的“子式”;(2);(3)

36、存在,【分析】(1)根据“雅含”关系的定义即可判断;(2)先求出解集,根据“雅含”关系的定义得出,解不等式即可;(3)首先解关于的方程组即可求得的值,然后根据,且为整数即可得到一个关于的范围,从而求得的整数值【详解】解:(1)不等式A:x+21的解集为,A与B存在“雅含”关系,B是A的“子式”;(2)不等式,解得:,不等式:,解得:,与存在“雅含”关系,且是的“子式”,解得:,(3)存在;由解得:,即:,解得:,为整数,的值为,解不等式得:,解不等式得:,与存在“雅含”关系,且是的“子式”,不等式的解集为:,且,解得:,【点睛】本题考查了不等式组的解法及整数解的确定求不等式组的解集,应遵循以下

37、原则:同大取较大,同小取较小,大小小大中间找,大大小小无解17(1)A1(2,n1),B1(n1,2),At(1+t,nt),Bt(nt,1+t);(2)B;(3)t或t或t【分析】(1)根据点在平面直角坐标系中的平移规律求解可得答案;(2)由1+tn时tn1,知ntn(n1)1,据此可得答案;(3)分n为奇数和偶数两种情况,得出对应的方程,解之可得n关于t的式子【详解】解:(1)A1(2,n1),B1(n1,2),At(1+t,nt),Bt(nt,1+t);(2)当1+tn时,tn1此时ntn(n1)1,故选:B;(3)当n为奇数时:1+tnt 解得t,当n为偶数时:1+tnt+1 解得t,

38、或1+tnt1 解得t【点睛】本题主要考查坐标与图形变化平移,解题的关键是掌握点在平面直角坐标系中的平移规律:横坐标,右移加,左移减;纵坐标,上移加,下移减18(1)(0,6),(8,0);(2)存在t=2.4时,使得ODP与ODQ的面积相等;(3)DOG+ACE=OHC【分析】(1)利用非负性即可求出a,b即可得出结论;(2)先表示出OQ,OP,利用面积相等,建立方程求解即可得出结论;(3)先判断出OAC=AOD,进而判断出OGAC,即可判断出FHC=ACE,同理FHO=DOG,即可得出结论【详解】解:(1),a-b+2=0,b-8=0,a=6,b=8,A(0,6),C(8,0),故答案为(

39、0,6),(8,0);(2)由(1)知,A(0,6),C(8,0),OA=6,OB=8,由运动知,OQ=t,PC=2t,OP=8-2t,D(4,3),SODQ=OQ|xD|=t4=2t,SODP=OP|yD|=(8-2t)3=12-3t,ODP与ODQ的面积相等,2t=12-3t,t=2.4,存在t=2.4时,使得ODP与ODQ的面积相等;(3)GOD+ACE=OHC,理由如下:x轴y轴,AOC=DOC+AOD=90,OAC+ACO=90,又DOC=DCO,OAC=AOD,y轴平分GOD,GOA=AOD,GOA=OAC,OGAC,如图,过点H作HFOG交x轴于F,HFAC,FHC=ACE,同理FHO=GOD,OGFH,DOG=FHO,DOG+ACE=FHO+FHC,即DOG+ACE=OHC【点睛】此题是三角形综合题,主要考查了非负性的性质,三角形的面积公式,角平分线的定义,平行线的性质,正确作出辅助线是解本题的关键19(1)方程的正整数解是或(只要写出其中的一组即可);(2)满足条件x的值有4个:x=3或x=4或x=5或x=8;(3)有两种购买方案:即购买单价为3元的笔记本5本,单价为5元的钢笔4支;或购买单价为3元的笔记本10本,单价为5元的钢笔1支【解析】(1)-(2) C (3)解:设购买单价为3元的笔记本x个,

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服