收藏 分销(赏)

上海杨浦初级中学八年级上册期末数学试卷含答案[001].doc

上传人:丰**** 文档编号:5197879 上传时间:2024-10-28 格式:DOC 页数:18 大小:1.30MB
下载 相关 举报
上海杨浦初级中学八年级上册期末数学试卷含答案[001].doc_第1页
第1页 / 共18页
上海杨浦初级中学八年级上册期末数学试卷含答案[001].doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述
上海杨浦初级中学八年级上册期末数学试卷含答案 一、选择题 1、下列图形中,是中心对称图形但不是轴对称图形的是(       )                      A.赵爽弦图 B.科克曲线 C.笛卡尔心形线 D.斐波拉切螺旋线 2、科技不断发展,晶体管长度越造越短,长度只有0.000000006米的晶体管已经诞生,该数用科学记数法表示为(       )米. A. B. C. D. 3、下列运算正确的是(       ) A. B. C. D. 4、若,则下列分式值为0的是(       ) A. B. C. D. 5、下列从左边到右边的变形,属于因式分解的是(       ) A. B. C. D. 6、下列各式中的变形,错误的是(       ) A. B. C. D. 7、如图,已知∠1=∠2,AC=AD,增加下列条件之一:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有(  ) A.1个 B.2个 C.3个 D.4个 8、解关于的方程产生增根,则常数的值等于(       ) A.-5 B.-4 C.-3 D.2 9、如图,是的中线,,求的度数(       ) A. B. C. D. 二、填空题 10、如图,点C在线段BG上的一点,以BC,CG为边向两边作正方形,面积分别是S1和S2,两正方形的面积和S1+S2=40,已知BG=8,则图中阴影部分面积为(       ) A.6 B.8 C.10 D.12 11、当x=_____时,分式的值为零. 12、点A(﹣4,1)关于x轴的对称点坐标为_______. 13、已知,则的值是__________. 14、已知,则_________. 15、如图,在中,,,是的两条中线,是上的一个动点,则图中长度与的最小值相等的线段是_______. 16、已知一个n边形的内角和等于,则n=_____ 17、已知a,b均为实数,且+a2b2+9=6ab,则a2+b2=_______. 18、如图,,,、分别为线段和射线上的一点,若点从点出发向点运动,同时点从点出发向点运动,二者速度之比为,运动到某时刻同时停止,在射线上取一点,使与全等,则的长为________. 三、解答题 19、把下列各式分解因式: (1)3mx﹣6my; (2)x2+12x+35、 20、解方程:﹣=1. 21、如图,AB=AC,∠BAD=∠CAD,证明:△ABD≌△ACD 22、已知:. (1)如图1,求证:; (2)如图2,连接,,点P在射线上,,射线交于点M,补全图形后请探究的数量关系,并证明你的结论. 23、第二实验中学八年级学生去距学校10千米的文化广场参加活动,一部分同学骑自行车先走,过了25分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的平均速度是骑车同学平均速度的2倍,求汽车的平均速度. 24、已知一个三位自然数,若满足百位数字等于十位数字与个位数字之和,则称这个数为“好数”,若满足百位数字等于十位数字与个位数字的平方差,则称这个数为“友数”.如果一个数既是“好数”,又是“友数”,则称这个数为“好友数”.例如321,∵3=2+1,∴321是“好数”,∵3=22﹣12,∴321是“友数”,∴321是“好友数”. (1)最小的好友数是    ,最大的好友数是    ; (2)证明:任意“好友数”的十位数字比个位数字大1; (3)已知m=10b+3c+817(0≤b≤5,1≤c≤9,且b,c均为整数)是一个“好数”,请求出所有符合条件的m的值. 25、在平面直角坐标系中,,点在第一象限,, (1)如图,求点的坐标. (2)如图,作的角平分线,交于点,过点作于点,求证: (3)若点在第二象限,且为等腰直角三角形,请直接写出所有满足条件的点的坐标. 一、选择题 1、A 【解析】A 【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可. 【详解】解:解:A、不是轴对称图形,是中心对称图形,故A选项合题意; B、既是轴对称图形又是中心对称图形,故B选项不符合题意; C、是轴对称图形,不是中心对称图形,故C选项不合题意; D、不是轴对称图形,也不是中心对称图形,故D选项不合题意. 故选:A. 【点睛】本题主要考查了轴对称图形和中心对称图形,解题的关键在于能够熟练掌握轴对称图形和中心对称图形的定义. 2、D 【解析】D 【分析】根据科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,确定a、n的值即可. 【详解】解:由题意知:0.000000006=, 故选:D. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解题的关键. 3、A 【解析】A 【分析】根据运算法则计算判断即可. 【详解】因为, 所以A计算正确; 因为, 所以B计算错误; 因为 所以C计算错误; 因为, 所以D计算错误; 故选A. 【点睛】本题考查了幂的计算,熟练掌握运算的法则是解题的关键. 4、D 【解析】D 【分析】把逐一代入各选项计算,即可解答. 【详解】解:A. 当时, ,故A不符合题意; B. 分式有意义时,,故B不符合题意; C. 当时,,故C不符合题意; D. 当时,,故D符合题意, 故选:D. 【点睛】本题考查分式的值为0,分式有意义的条件等知识,是基础考点,掌握相关知识是解题关键. 5、D 【解析】D 【分析】根据因式分解的定义,因式分解是把一个多项式化为几个整式积的形式,对各选项分析判断后利用排除法求解. 【详解】解:A.原式是整式的乘法运算,不符合因式分解的定义,不是因式分解,故本选项符合题意; B.原式不符合因式分解的定义,不是因式分解,故本选项不符合题意; C.原式不符合因式分解的定义,不是因式分解,故本选项不符合题意; D.原式符合因式分解的定义,是因式分解,故本选项符合题意; 故选:D. 【点睛】本题主要考查了因式分解的定义,因式分解与整式的乘法是互为逆运算,要注意区分. 6、B 【解析】B 【分析】根据分式的符号法则,可判断A、D,根据分式的基本性质可判断B、C. 【详解】解:A.        根据分式的符号法则分式的分子,分母,分式本身三处符号,任意改变两处的符号,分式的值不变,故选项A正确, B. 根据分式的基本性质,分子、分母都乘以或除以不为0的数或整式,而不是加或减数或整式,故选项B错误;        C. 根据分式的基本性质,分子、分母都乘以或除以同一个不为0的数,分式的值不变,故选项C正确        D. 根据分式的符号法则分式的分子,分母,分式本身三处符号,任意改变两处的符号,分式的值不变,故选项D正确. 故选择B. 【点睛】本题考查分式的符号法则,和分式的基本性质将分式恒等变形,掌握分式的符号法则,和分式的基本性质是解题关键. 7、C 【解析】C 【分析】先由∠1=∠2得到∠CAB=∠DAE,然后分别利用“SAS”、“ASA”和“AAS”对各添加的条件进行判断. 【详解】解:∵∠1=∠2, ∴∠CAB=∠DAE, ∵AC=AD, ∴①当AB=AE时,可根据“SAS”判断△ABC≌△AED; ②当BC=ED时,不能判断△ABC≌△AED; ③当∠C=∠D时,可根据“ASA”判断△ABC≌△AED; ④当∠B=∠E时,可根据“AAS”判断△ABC≌△AED. 故选:C. 【点睛】本题考查了全等三角形的判定:三条边分别对应相等的两个三角形全等;两边及其夹角分别对应相等的两个三角形全等;两角及其夹边分别对应相等的两个三角形全等;两角及其中一个角的对边对应相等的两个三角形全等. 8、B 【解析】B 【分析】先把分式方程化为整式方程得到x=a+6,由于原分式方程有增根,则增根只能为2,然后在整式方程中当x=2时,求出对应的a的值即可. 【详解】】解:去分母得x-6=a, 解得x=a+6, 因为关于x的方程产生增根, 所以x=2,即a+6=2,解得a=-3、 故选:B. 【点睛】本题考查了分式方程的增根:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根. 9、C 【解析】C 【分析】根据题意得,即,根据三角形的外角得,即可得. 【详解】解:∵CD是Rt△ABC的中线,∠ACB=90°, ∴, ∴, ∵, ∴, 故选C. 【点睛】本题考查了直角三角形斜边中线的性质,等腰三角形的性质,三角形的外角,解题的关键是掌握这些知识点. 二、填空题 10、A 【解析】A 【分析】设BC=a,CG=b,建立关于a,b的关系,最后求面积. 【详解】解:设BC=a,CG=b,则S1=a2,S2=b2,a+b=BG=7、 ∴a2+b2=40. ∵(a+b)2=a2+b2+2ab=64, ∴2ab=64-40=24, ∴ab=12, ∴阴影部分的面积等于ab=×12=5、 故选:A. 【点睛】本题考查完全平方公式的几何背景,通过面积关系构造使用完全平方公式的条件是求解本题的关键. 11、-3 【分析】当x+3=0,且2x-5≠0时,分式的值为零. 【详解】∵分式的值为零, ∴x+3=0,且2x-5≠0, ∴x= -3, 故答案为:-2、 【点睛】本题考查了分式的值为零的条件,熟记分子等于零,且分母不等于零是解题的关键. 12、A 【解析】(﹣4,﹣1) 【分析】根据点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y)求解. 【详解】解:点A(﹣4,1)关于x轴对称的点的坐标为(﹣4,﹣1). 故答案为(﹣4,﹣1). 【点睛】本题考查了关于x轴、y轴对称的点的坐标:点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y);点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y). 13、 【分析】先利用乘法公式算出的值,再根据分式的加法运算算出结果. 【详解】解:∵,, ∴, ∴. 故答案为:. 【点睛】本题考查分式的求值,解题的关键是掌握分式的加法运算法则. 14、3 【分析】逆用同底数幂的除法公式即可. 【详解】∵, ∴. 故答案为:2、 【点睛】本题考查同底数幂的除法逆用,熟记同底数幂相除,底数不变,指数相减是解题的关键. 15、##EC 【分析】如图,连接,根据,是的中线,可推出,即可得到,由于是上的一个动点同时结合三角形三边关系定理可得,根据两点之间线段最短,当点、、共线时,的值最小,最小值为线段的长度,即可得解. 【详 【解析】##EC 【分析】如图,连接,根据,是的中线,可推出,即可得到,由于是上的一个动点同时结合三角形三边关系定理可得,根据两点之间线段最短,当点、、共线时,的值最小,最小值为线段的长度,即可得解. 【详解】解:如图,连接, ∵,是的中线, ∴,, ∴垂直平分, ∴, ∴, ∵是上的一个动点, ∴, 当点、、共线时,的值最小,最小值为线段的长度, 即与的最小值相等的线段是. 故答案为:. 【点睛】本题考查轴对称—最短路线问题,等腰三角形三线合一的性质,线段的垂直平分线的判定和性质,三角形三边关系定理,两点之间线段最短等知识.解题的关键是灵活运用所学知识解决问题. 16、5 【分析】已知n边形的内角和为540°,根据多边形内角和的公式易求解. 【详解】解:依题意有 (n﹣2)•180°=540°, 解得n=4、 故答案为:4、 【点睛】此题主要考查的是多边形的内角和 【解析】5 【分析】已知n边形的内角和为540°,根据多边形内角和的公式易求解. 【详解】解:依题意有 (n﹣2)•180°=540°, 解得n=4、 故答案为:4、 【点睛】此题主要考查的是多边形的内角和公式,熟记多边形的内角和公式是解题的关键. 17、19 【分析】利用完全平方公式变形得到+(ab-3)2=0,求出a+b=5,ab=3,再利用完全公式变形计算即可. 【详解】解:∵+a2b2+9=6ab, ∴+a2b2+9-6ab=0, ∴+(ab 【解析】19 【分析】利用完全平方公式变形得到+(ab-3)2=0,求出a+b=5,ab=3,再利用完全公式变形计算即可. 【详解】解:∵+a2b2+9=6ab, ∴+a2b2+9-6ab=0, ∴+(ab-3)2=0, ∴a+b=5,ab=3, ∴a2+b2=(a+b)2-2ab=52-6=19, 故答案为:18、 【点睛】此题考查了完全平方公式的变形计算,算术平方根及偶次方根的非负性,正确掌握完全平方公式是解题的关键. 18、2或6##6或2 【分析】设BE=t,则BF=2t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况: 情况一:当BE=AG,BF=AE时,列方程解得t,可得AG; 情况二:当BE=A 【解析】2或6##6或2 【分析】设BE=t,则BF=2t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况: 情况一:当BE=AG,BF=AE时,列方程解得t,可得AG; 情况二:当BE=AE,BF=AG时,列方程解得t,可得AG. 【详解】解:设BE=t,则BF=2t,AE=6-t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况: 情况一:当BE=AG,BF=AE时, ∵BF=AE,AB=6, ∴2t=6-t, 解得:t=2, ∴AG=BE=t=2; 情况二:当BE=AE,BF=AG时, ∵BE=AE,AB=6, ∴t=6-t, 解得:t=3, ∴AG=BF=2t=2×3=6, 综上所述,AG=2或AG=5、 故答案为:2或5、 【点睛】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键. 三、解答题 19、(1)3m(x﹣2y); (2)(x+6)2 【分析】(1)直接提公因式3m即可求解; (2)利用完全平方公式分解因式即可. (1) 解:原式=3m(x﹣2y); (2) 解:原式=(x+6)1、 【解析】(1)3m(x﹣2y); (2)(x+6)2 【分析】(1)直接提公因式3m即可求解; (2)利用完全平方公式分解因式即可. (1) 解:原式=3m(x﹣2y); (2) 解:原式=(x+6)1、 【点睛】本题考查因式分解,熟记完全平方公式,掌握提公因式法和公式法分解因式是解答的关键. 20、无解 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,检验即可. 【详解】解:﹣=1 去分母得:, 解得:x=3, 检验:当x=3时,(x+3)(x-3)=0, ∴x=3是分式方程 【解析】无解 【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,检验即可. 【详解】解:﹣=1 去分母得:, 解得:x=3, 检验:当x=3时,(x+3)(x-3)=0, ∴x=3是分式方程的增根,原方程无解. 【点睛】此题考查了解分式方程,解分式方程利用了转化的思想,注意要检验. 21、见解析 【分析】由“”可证△ABD≌△ACD. 【详解】证明:在△ABD和△ACD 中, ∴△ABD≌△ACD(SAS) 【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定定理是解题的关键 【解析】见解析 【分析】由“”可证△ABD≌△ACD. 【详解】证明:在△ABD和△ACD 中, ∴△ABD≌△ACD(SAS) 【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定定理是解题的关键. 22、(1)答案见解析 (2)2(∠BMC+∠AEB)=3∠CAB,证明见解析 【分析】(1)如图1,过F作FH∥AB,根据平行线的性质得到∠1=∠2,∠3=∠FDC,由等量代换得到∠BFC=∠ABE+∠ 【解析】(1)答案见解析 (2)2(∠BMC+∠AEB)=3∠CAB,证明见解析 【分析】(1)如图1,过F作FH∥AB,根据平行线的性质得到∠1=∠2,∠3=∠FDC,由等量代换得到∠BFC=∠ABE+∠FCD,即可得到结论; (2)设∠BCP=∠DCP=,∠ABE=∠PBF=,∠PCF=,根据已知条件得到 ,由(1)知,∠AEB=∠ABE+∠DCF=,∠E=∠PBF+∠DCF=∠PBF+∠DCP-∠PCF=,于是得到2(∠BMC+∠E)=2()=6,等量代换即可得到结论. (1) 解:如图1,过F作FH∥AB, ∵AB∥CD, ∴FH∥CD, ∴∠1=∠2,∠3=∠FDC, ∵∠2=∠ABE, ∴∠1=ABE, ∵∠BFC=∠1+∠3, ∴∠BFC=∠ABE+∠FCD, ∵∠ABE=∠BFC, ∴∠AEB=∠ABE+∠DCF; (2) 解:设∠BCP=∠DCP=,∠ABE=∠PBF=,∠PCF=, ∵∠BCF=2∠ABE, ∴,即, 由(1)知,∠AEB=∠ABE+∠DCF=,∠E=∠PBF+∠DCF=∠PBF+∠DCP-∠PCF=, ∴2(∠BMC+∠E)=2()=6, ∵3∠CAB=3(∠E+∠ABE)=3()=6, ∴2(∠BMC+∠AEB)=3∠CAB. 【点睛】本题考查了平行线的性质,角平分线的定义,三角形内角与外角的关系,解题的关键是熟练掌握平行线的性质. 23、24千米/时 【分析】关键描述语:“过了25分后,其余同学乘汽车出发,结果他们同时到达”;等量关系为:骑自行车同学所用时间−乘车同学所用时间=. 【详解】设骑车同学平均速度是x千米/时,则汽车的平均 【解析】24千米/时 【分析】关键描述语:“过了25分后,其余同学乘汽车出发,结果他们同时到达”;等量关系为:骑自行车同学所用时间−乘车同学所用时间=. 【详解】设骑车同学平均速度是x千米/时,则汽车的平均速度是2x千米/时. 依题意,, 解得x=11、 经检验,x=12是原方程的解. ∴2x=23、 答:汽车的平均速度是24千米/时. 【点睛】此题主要考查了分式方程的应用,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键. 24、(1);(2)见解析;(3) 【分析】(1)根据好友数的定义,以及最小,最大的个位数即可求得; (2)根据好友数的定义,设好友数的百位数字为,十位数字为,个位数字为,根据好友数的定义,进行计算即可得 【解析】(1);(2)见解析;(3) 【分析】(1)根据好友数的定义,以及最小,最大的个位数即可求得; (2)根据好友数的定义,设好友数的百位数字为,十位数字为,个位数字为,根据好友数的定义,进行计算即可得证; (3)首先确定的百位数,再三种情况讨论当时,当时,当时,根据的范围以及整数解,解二元一次方程即可. 【详解】(1)百位数字最小为1, , 最小的好友数是:110; 百位数字最大为9, , 最大的好友数是:954; 故答案为:110,954; (2)设好友数的百位数字为,十位数字为,个位数字为, , , 即, 任意“好友数”的十位数字比个位数字大1; (3),且是整数, 百位数字是8, ,是整数, 当时,的十位数字是,个位数字是, 是一个“好数”, , 即, 或者, 或, 或者, 当时,的十位数字是,个位数字是, 是一个“好数”, , 即, 或, 或, 当时,的十位数字是,个位数字是, 是一个“好数”, , 即, 或, 或. 综上所述,所有符合条件的的值为:. 【点睛】本题考查了新定义,二元一次方程的整数解,平方差公式,分类讨论是解题的关键. 25、(1)C;(2)见解析;(3)或或 【分析】(1)作垂足为,证明,求出CM和OM的长,即可得到点C坐标; (2)延长相交于点,先证明,得BD=CF,再证明,得CE=EF,即可证明结论; (3)分情况 【解析】(1)C;(2)见解析;(3)或或 【分析】(1)作垂足为,证明,求出CM和OM的长,即可得到点C坐标; (2)延长相交于点,先证明,得BD=CF,再证明,得CE=EF,即可证明结论; (3)分情况讨论,画出对应的等腰直角三角形的图象,做辅助线构造全等三角形,求出点P坐标. 【详解】解:如图中,作垂足为, , ,, 在和中, , 点坐标; 如图,延长相交于点, , 在和中, , , , 在和中, , , ; (3)①如图,,,过点P作轴于点D, 在和中, , ∴, ∴,, ∴, ∴; ②如图,,,过点P作轴于点D, 在和中, , ∴, ∴,, ∴, ∴; ③如图,,,过点P作轴于点E,过点A作于点D, ∵,, ∴, 在和中, , ∴, 设,, ∵,, ∴,解得, ∴,, ∴; 综上:点P的坐标是或或. 【点睛】本题考查坐标和几何综合题,解题的关键是掌握作辅助线构造全等三角形的方法,利用全等三角形的性质求解点坐标,掌握数形结合的思想.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服