资源描述
上海杨浦初级中学八年级上册期末数学试卷含答案
一、选择题
1、下列图形中,是中心对称图形但不是轴对称图形的是( )
A.赵爽弦图 B.科克曲线 C.笛卡尔心形线 D.斐波拉切螺旋线
2、科技不断发展,晶体管长度越造越短,长度只有0.000000006米的晶体管已经诞生,该数用科学记数法表示为( )米.
A. B. C. D.
3、下列运算正确的是( )
A. B.
C. D.
4、若,则下列分式值为0的是( )
A. B. C. D.
5、下列从左边到右边的变形,属于因式分解的是( )
A. B.
C. D.
6、下列各式中的变形,错误的是( )
A. B. C. D.
7、如图,已知∠1=∠2,AC=AD,增加下列条件之一:①AB=AE;②BC=ED;③∠C=∠D;④∠B=∠E.其中能使△ABC≌△AED的条件有( )
A.1个 B.2个 C.3个 D.4个
8、解关于的方程产生增根,则常数的值等于( )
A.-5 B.-4 C.-3 D.2
9、如图,是的中线,,求的度数( )
A. B. C. D.
二、填空题
10、如图,点C在线段BG上的一点,以BC,CG为边向两边作正方形,面积分别是S1和S2,两正方形的面积和S1+S2=40,已知BG=8,则图中阴影部分面积为( )
A.6 B.8 C.10 D.12
11、当x=_____时,分式的值为零.
12、点A(﹣4,1)关于x轴的对称点坐标为_______.
13、已知,则的值是__________.
14、已知,则_________.
15、如图,在中,,,是的两条中线,是上的一个动点,则图中长度与的最小值相等的线段是_______.
16、已知一个n边形的内角和等于,则n=_____
17、已知a,b均为实数,且+a2b2+9=6ab,则a2+b2=_______.
18、如图,,,、分别为线段和射线上的一点,若点从点出发向点运动,同时点从点出发向点运动,二者速度之比为,运动到某时刻同时停止,在射线上取一点,使与全等,则的长为________.
三、解答题
19、把下列各式分解因式:
(1)3mx﹣6my;
(2)x2+12x+35、
20、解方程:﹣=1.
21、如图,AB=AC,∠BAD=∠CAD,证明:△ABD≌△ACD
22、已知:.
(1)如图1,求证:;
(2)如图2,连接,,点P在射线上,,射线交于点M,补全图形后请探究的数量关系,并证明你的结论.
23、第二实验中学八年级学生去距学校10千米的文化广场参加活动,一部分同学骑自行车先走,过了25分钟后,其余同学乘汽车出发,结果他们同时到达.已知汽车的平均速度是骑车同学平均速度的2倍,求汽车的平均速度.
24、已知一个三位自然数,若满足百位数字等于十位数字与个位数字之和,则称这个数为“好数”,若满足百位数字等于十位数字与个位数字的平方差,则称这个数为“友数”.如果一个数既是“好数”,又是“友数”,则称这个数为“好友数”.例如321,∵3=2+1,∴321是“好数”,∵3=22﹣12,∴321是“友数”,∴321是“好友数”.
(1)最小的好友数是 ,最大的好友数是 ;
(2)证明:任意“好友数”的十位数字比个位数字大1;
(3)已知m=10b+3c+817(0≤b≤5,1≤c≤9,且b,c均为整数)是一个“好数”,请求出所有符合条件的m的值.
25、在平面直角坐标系中,,点在第一象限,,
(1)如图,求点的坐标.
(2)如图,作的角平分线,交于点,过点作于点,求证:
(3)若点在第二象限,且为等腰直角三角形,请直接写出所有满足条件的点的坐标.
一、选择题
1、A
【解析】A
【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断即可.
【详解】解:解:A、不是轴对称图形,是中心对称图形,故A选项合题意;
B、既是轴对称图形又是中心对称图形,故B选项不符合题意;
C、是轴对称图形,不是中心对称图形,故C选项不合题意;
D、不是轴对称图形,也不是中心对称图形,故D选项不合题意.
故选:A.
【点睛】本题主要考查了轴对称图形和中心对称图形,解题的关键在于能够熟练掌握轴对称图形和中心对称图形的定义.
2、D
【解析】D
【分析】根据科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,确定a、n的值即可.
【详解】解:由题意知:0.000000006=,
故选:D.
【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,正确确定a的值以及n的值是解题的关键.
3、A
【解析】A
【分析】根据运算法则计算判断即可.
【详解】因为,
所以A计算正确;
因为,
所以B计算错误;
因为
所以C计算错误;
因为,
所以D计算错误;
故选A.
【点睛】本题考查了幂的计算,熟练掌握运算的法则是解题的关键.
4、D
【解析】D
【分析】把逐一代入各选项计算,即可解答.
【详解】解:A. 当时, ,故A不符合题意;
B. 分式有意义时,,故B不符合题意;
C. 当时,,故C不符合题意;
D. 当时,,故D符合题意,
故选:D.
【点睛】本题考查分式的值为0,分式有意义的条件等知识,是基础考点,掌握相关知识是解题关键.
5、D
【解析】D
【分析】根据因式分解的定义,因式分解是把一个多项式化为几个整式积的形式,对各选项分析判断后利用排除法求解.
【详解】解:A.原式是整式的乘法运算,不符合因式分解的定义,不是因式分解,故本选项符合题意;
B.原式不符合因式分解的定义,不是因式分解,故本选项不符合题意;
C.原式不符合因式分解的定义,不是因式分解,故本选项不符合题意;
D.原式符合因式分解的定义,是因式分解,故本选项符合题意;
故选:D.
【点睛】本题主要考查了因式分解的定义,因式分解与整式的乘法是互为逆运算,要注意区分.
6、B
【解析】B
【分析】根据分式的符号法则,可判断A、D,根据分式的基本性质可判断B、C.
【详解】解:A. 根据分式的符号法则分式的分子,分母,分式本身三处符号,任意改变两处的符号,分式的值不变,故选项A正确,
B. 根据分式的基本性质,分子、分母都乘以或除以不为0的数或整式,而不是加或减数或整式,故选项B错误;
C. 根据分式的基本性质,分子、分母都乘以或除以同一个不为0的数,分式的值不变,故选项C正确
D. 根据分式的符号法则分式的分子,分母,分式本身三处符号,任意改变两处的符号,分式的值不变,故选项D正确.
故选择B.
【点睛】本题考查分式的符号法则,和分式的基本性质将分式恒等变形,掌握分式的符号法则,和分式的基本性质是解题关键.
7、C
【解析】C
【分析】先由∠1=∠2得到∠CAB=∠DAE,然后分别利用“SAS”、“ASA”和“AAS”对各添加的条件进行判断.
【详解】解:∵∠1=∠2,
∴∠CAB=∠DAE,
∵AC=AD,
∴①当AB=AE时,可根据“SAS”判断△ABC≌△AED;
②当BC=ED时,不能判断△ABC≌△AED;
③当∠C=∠D时,可根据“ASA”判断△ABC≌△AED;
④当∠B=∠E时,可根据“AAS”判断△ABC≌△AED.
故选:C.
【点睛】本题考查了全等三角形的判定:三条边分别对应相等的两个三角形全等;两边及其夹角分别对应相等的两个三角形全等;两角及其夹边分别对应相等的两个三角形全等;两角及其中一个角的对边对应相等的两个三角形全等.
8、B
【解析】B
【分析】先把分式方程化为整式方程得到x=a+6,由于原分式方程有增根,则增根只能为2,然后在整式方程中当x=2时,求出对应的a的值即可.
【详解】】解:去分母得x-6=a,
解得x=a+6,
因为关于x的方程产生增根,
所以x=2,即a+6=2,解得a=-3、
故选:B.
【点睛】本题考查了分式方程的增根:把由分式方程化成的整式方程的解代入最简公分母,看最简公分母是否为0,如果为0,则是增根;如果不是0,则是原分式方程的根.
9、C
【解析】C
【分析】根据题意得,即,根据三角形的外角得,即可得.
【详解】解:∵CD是Rt△ABC的中线,∠ACB=90°,
∴,
∴,
∵,
∴,
故选C.
【点睛】本题考查了直角三角形斜边中线的性质,等腰三角形的性质,三角形的外角,解题的关键是掌握这些知识点.
二、填空题
10、A
【解析】A
【分析】设BC=a,CG=b,建立关于a,b的关系,最后求面积.
【详解】解:设BC=a,CG=b,则S1=a2,S2=b2,a+b=BG=7、
∴a2+b2=40.
∵(a+b)2=a2+b2+2ab=64,
∴2ab=64-40=24,
∴ab=12,
∴阴影部分的面积等于ab=×12=5、
故选:A.
【点睛】本题考查完全平方公式的几何背景,通过面积关系构造使用完全平方公式的条件是求解本题的关键.
11、-3
【分析】当x+3=0,且2x-5≠0时,分式的值为零.
【详解】∵分式的值为零,
∴x+3=0,且2x-5≠0,
∴x= -3,
故答案为:-2、
【点睛】本题考查了分式的值为零的条件,熟记分子等于零,且分母不等于零是解题的关键.
12、A
【解析】(﹣4,﹣1)
【分析】根据点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y)求解.
【详解】解:点A(﹣4,1)关于x轴对称的点的坐标为(﹣4,﹣1).
故答案为(﹣4,﹣1).
【点睛】本题考查了关于x轴、y轴对称的点的坐标:点P(x,y)关于x轴的对称点P′的坐标是(x,﹣y);点P(x,y)关于y轴的对称点P′的坐标是(﹣x,y).
13、
【分析】先利用乘法公式算出的值,再根据分式的加法运算算出结果.
【详解】解:∵,,
∴,
∴.
故答案为:.
【点睛】本题考查分式的求值,解题的关键是掌握分式的加法运算法则.
14、3
【分析】逆用同底数幂的除法公式即可.
【详解】∵,
∴.
故答案为:2、
【点睛】本题考查同底数幂的除法逆用,熟记同底数幂相除,底数不变,指数相减是解题的关键.
15、##EC
【分析】如图,连接,根据,是的中线,可推出,即可得到,由于是上的一个动点同时结合三角形三边关系定理可得,根据两点之间线段最短,当点、、共线时,的值最小,最小值为线段的长度,即可得解.
【详
【解析】##EC
【分析】如图,连接,根据,是的中线,可推出,即可得到,由于是上的一个动点同时结合三角形三边关系定理可得,根据两点之间线段最短,当点、、共线时,的值最小,最小值为线段的长度,即可得解.
【详解】解:如图,连接,
∵,是的中线,
∴,,
∴垂直平分,
∴,
∴,
∵是上的一个动点,
∴,
当点、、共线时,的值最小,最小值为线段的长度,
即与的最小值相等的线段是.
故答案为:.
【点睛】本题考查轴对称—最短路线问题,等腰三角形三线合一的性质,线段的垂直平分线的判定和性质,三角形三边关系定理,两点之间线段最短等知识.解题的关键是灵活运用所学知识解决问题.
16、5
【分析】已知n边形的内角和为540°,根据多边形内角和的公式易求解.
【详解】解:依题意有
(n﹣2)•180°=540°,
解得n=4、
故答案为:4、
【点睛】此题主要考查的是多边形的内角和
【解析】5
【分析】已知n边形的内角和为540°,根据多边形内角和的公式易求解.
【详解】解:依题意有
(n﹣2)•180°=540°,
解得n=4、
故答案为:4、
【点睛】此题主要考查的是多边形的内角和公式,熟记多边形的内角和公式是解题的关键.
17、19
【分析】利用完全平方公式变形得到+(ab-3)2=0,求出a+b=5,ab=3,再利用完全公式变形计算即可.
【详解】解:∵+a2b2+9=6ab,
∴+a2b2+9-6ab=0,
∴+(ab
【解析】19
【分析】利用完全平方公式变形得到+(ab-3)2=0,求出a+b=5,ab=3,再利用完全公式变形计算即可.
【详解】解:∵+a2b2+9=6ab,
∴+a2b2+9-6ab=0,
∴+(ab-3)2=0,
∴a+b=5,ab=3,
∴a2+b2=(a+b)2-2ab=52-6=19,
故答案为:18、
【点睛】此题考查了完全平方公式的变形计算,算术平方根及偶次方根的非负性,正确掌握完全平方公式是解题的关键.
18、2或6##6或2
【分析】设BE=t,则BF=2t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况:
情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;
情况二:当BE=A
【解析】2或6##6或2
【分析】设BE=t,则BF=2t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况:
情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;
情况二:当BE=AE,BF=AG时,列方程解得t,可得AG.
【详解】解:设BE=t,则BF=2t,AE=6-t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:
情况一:当BE=AG,BF=AE时,
∵BF=AE,AB=6,
∴2t=6-t,
解得:t=2,
∴AG=BE=t=2;
情况二:当BE=AE,BF=AG时,
∵BE=AE,AB=6,
∴t=6-t,
解得:t=3,
∴AG=BF=2t=2×3=6,
综上所述,AG=2或AG=5、
故答案为:2或5、
【点睛】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键.
三、解答题
19、(1)3m(x﹣2y);
(2)(x+6)2
【分析】(1)直接提公因式3m即可求解;
(2)利用完全平方公式分解因式即可.
(1)
解:原式=3m(x﹣2y);
(2)
解:原式=(x+6)1、
【解析】(1)3m(x﹣2y);
(2)(x+6)2
【分析】(1)直接提公因式3m即可求解;
(2)利用完全平方公式分解因式即可.
(1)
解:原式=3m(x﹣2y);
(2)
解:原式=(x+6)1、
【点睛】本题考查因式分解,熟记完全平方公式,掌握提公因式法和公式法分解因式是解答的关键.
20、无解
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,检验即可.
【详解】解:﹣=1
去分母得:,
解得:x=3,
检验:当x=3时,(x+3)(x-3)=0,
∴x=3是分式方程
【解析】无解
【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,检验即可.
【详解】解:﹣=1
去分母得:,
解得:x=3,
检验:当x=3时,(x+3)(x-3)=0,
∴x=3是分式方程的增根,原方程无解.
【点睛】此题考查了解分式方程,解分式方程利用了转化的思想,注意要检验.
21、见解析
【分析】由“”可证△ABD≌△ACD.
【详解】证明:在△ABD和△ACD 中,
∴△ABD≌△ACD(SAS)
【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定定理是解题的关键
【解析】见解析
【分析】由“”可证△ABD≌△ACD.
【详解】证明:在△ABD和△ACD 中,
∴△ABD≌△ACD(SAS)
【点睛】本题考查了全等三角形的判定,掌握全等三角形的判定定理是解题的关键.
22、(1)答案见解析
(2)2(∠BMC+∠AEB)=3∠CAB,证明见解析
【分析】(1)如图1,过F作FH∥AB,根据平行线的性质得到∠1=∠2,∠3=∠FDC,由等量代换得到∠BFC=∠ABE+∠
【解析】(1)答案见解析
(2)2(∠BMC+∠AEB)=3∠CAB,证明见解析
【分析】(1)如图1,过F作FH∥AB,根据平行线的性质得到∠1=∠2,∠3=∠FDC,由等量代换得到∠BFC=∠ABE+∠FCD,即可得到结论;
(2)设∠BCP=∠DCP=,∠ABE=∠PBF=,∠PCF=,根据已知条件得到 ,由(1)知,∠AEB=∠ABE+∠DCF=,∠E=∠PBF+∠DCF=∠PBF+∠DCP-∠PCF=,于是得到2(∠BMC+∠E)=2()=6,等量代换即可得到结论.
(1)
解:如图1,过F作FH∥AB,
∵AB∥CD,
∴FH∥CD,
∴∠1=∠2,∠3=∠FDC,
∵∠2=∠ABE,
∴∠1=ABE,
∵∠BFC=∠1+∠3,
∴∠BFC=∠ABE+∠FCD,
∵∠ABE=∠BFC,
∴∠AEB=∠ABE+∠DCF;
(2)
解:设∠BCP=∠DCP=,∠ABE=∠PBF=,∠PCF=,
∵∠BCF=2∠ABE,
∴,即,
由(1)知,∠AEB=∠ABE+∠DCF=,∠E=∠PBF+∠DCF=∠PBF+∠DCP-∠PCF=,
∴2(∠BMC+∠E)=2()=6,
∵3∠CAB=3(∠E+∠ABE)=3()=6,
∴2(∠BMC+∠AEB)=3∠CAB.
【点睛】本题考查了平行线的性质,角平分线的定义,三角形内角与外角的关系,解题的关键是熟练掌握平行线的性质.
23、24千米/时
【分析】关键描述语:“过了25分后,其余同学乘汽车出发,结果他们同时到达”;等量关系为:骑自行车同学所用时间−乘车同学所用时间=.
【详解】设骑车同学平均速度是x千米/时,则汽车的平均
【解析】24千米/时
【分析】关键描述语:“过了25分后,其余同学乘汽车出发,结果他们同时到达”;等量关系为:骑自行车同学所用时间−乘车同学所用时间=.
【详解】设骑车同学平均速度是x千米/时,则汽车的平均速度是2x千米/时.
依题意,,
解得x=11、
经检验,x=12是原方程的解.
∴2x=23、
答:汽车的平均速度是24千米/时.
【点睛】此题主要考查了分式方程的应用,应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.
24、(1);(2)见解析;(3)
【分析】(1)根据好友数的定义,以及最小,最大的个位数即可求得;
(2)根据好友数的定义,设好友数的百位数字为,十位数字为,个位数字为,根据好友数的定义,进行计算即可得
【解析】(1);(2)见解析;(3)
【分析】(1)根据好友数的定义,以及最小,最大的个位数即可求得;
(2)根据好友数的定义,设好友数的百位数字为,十位数字为,个位数字为,根据好友数的定义,进行计算即可得证;
(3)首先确定的百位数,再三种情况讨论当时,当时,当时,根据的范围以及整数解,解二元一次方程即可.
【详解】(1)百位数字最小为1,
,
最小的好友数是:110;
百位数字最大为9,
,
最大的好友数是:954;
故答案为:110,954;
(2)设好友数的百位数字为,十位数字为,个位数字为,
,
,
即,
任意“好友数”的十位数字比个位数字大1;
(3),且是整数,
百位数字是8,
,是整数,
当时,的十位数字是,个位数字是,
是一个“好数”,
,
即,
或者,
或,
或者,
当时,的十位数字是,个位数字是,
是一个“好数”,
,
即,
或,
或,
当时,的十位数字是,个位数字是,
是一个“好数”,
,
即,
或,
或.
综上所述,所有符合条件的的值为:.
【点睛】本题考查了新定义,二元一次方程的整数解,平方差公式,分类讨论是解题的关键.
25、(1)C;(2)见解析;(3)或或
【分析】(1)作垂足为,证明,求出CM和OM的长,即可得到点C坐标;
(2)延长相交于点,先证明,得BD=CF,再证明,得CE=EF,即可证明结论;
(3)分情况
【解析】(1)C;(2)见解析;(3)或或
【分析】(1)作垂足为,证明,求出CM和OM的长,即可得到点C坐标;
(2)延长相交于点,先证明,得BD=CF,再证明,得CE=EF,即可证明结论;
(3)分情况讨论,画出对应的等腰直角三角形的图象,做辅助线构造全等三角形,求出点P坐标.
【详解】解:如图中,作垂足为,
,
,,
在和中,
,
点坐标;
如图,延长相交于点,
,
在和中,
,
,
,
在和中,
,
,
;
(3)①如图,,,过点P作轴于点D,
在和中,
,
∴,
∴,,
∴,
∴;
②如图,,,过点P作轴于点D,
在和中,
,
∴,
∴,,
∴,
∴;
③如图,,,过点P作轴于点E,过点A作于点D,
∵,,
∴,
在和中,
,
∴,
设,,
∵,,
∴,解得,
∴,,
∴;
综上:点P的坐标是或或.
【点睛】本题考查坐标和几何综合题,解题的关键是掌握作辅助线构造全等三角形的方法,利用全等三角形的性质求解点坐标,掌握数形结合的思想.
展开阅读全文