收藏 分销(赏)

全国中考数学一元二次方程组的综合中考真题汇总及答案.doc

上传人:人****来 文档编号:5195779 上传时间:2024-10-28 格式:DOC 页数:10 大小:262.54KB
下载 相关 举报
全国中考数学一元二次方程组的综合中考真题汇总及答案.doc_第1页
第1页 / 共10页
全国中考数学一元二次方程组的综合中考真题汇总及答案.doc_第2页
第2页 / 共10页
点击查看更多>>
资源描述
全国中考数学一元二次方程组的综合中考真题汇总及答案 一、一元二次方程 1.已知关于x的一元二次方程(x﹣3)(x﹣4)﹣m2=0. (1)求证:对任意实数m,方程总有2个不相等的实数根; (2)若方程的一个根是2,求m的值及方程的另一个根. 【答案】(1)证明见解析;(2)m的值为±,方程的另一个根是5. 【解析】 【分析】 (1)先把方程化为一般式,利用根的判别式△=b2-4ac证明判断即可; (2)根据方程的根,利用代入法即可求解m的值,然后还原方程求出另一个解即可. 【详解】 (1)证明: ∵(x﹣3)(x﹣4)﹣m2=0, ∴x2﹣7x+12﹣m2=0, ∴△=(﹣7)2﹣4(12﹣m2)=1+4m2, ∵m2≥0, ∴△>0, ∴对任意实数m,方程总有2个不相等的实数根; (2)解:∵方程的一个根是2, ∴4﹣14+12﹣m2=0,解得m=±, ∴原方程为x2﹣7x+10=0,解得x=2或x=5, 即m的值为±,方程的另一个根是5. 【点睛】 此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键. 当△=b2-4ac>0时,方程有两个不相等的实数根; 当△=b2-4ac=0时,方程有两个相等的实数根; 当△=b2-4ac<0时,方程没有实数根. 2.计算题  (1)先化简,再求值:÷(1+),其中x=2017. (2)已知方程x2﹣2x+m﹣3=0有两个相等的实数根,求m的值. 【答案】(1)2018;(2)m=4 【解析】 分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用; (2)根据一元二次方程的根的判别式求解即可. 详解:(1)÷(1+) = = =x+1, 当x=2017时,原式=2017+1=2018 (2)解:∵方程x2﹣2x+m﹣3=0有两个相等的实数根, ∴△=(﹣2)2﹣4×1×(m﹣3)=0, 解得,m=4 点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式,关键是熟记分式方程的运算顺序和法则,注意通分约分的作用. 3.已知关于x的一元二次方程x2﹣x+a﹣1=0. (1)当a=﹣11时,解这个方程; (2)若这个方程有两个实数根x1,x2,求a的取值范围; (3)若方程两个实数根x1,x2满足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值. 【答案】(1)(2)(3)-4 【解析】 分析:(1)根据一元二次方程的解法即可求出答案; (2)根据判别式即可求出a的范围; (3)根据根与系数的关系即可求出答案. 详解:(1)把a=﹣11代入方程,得x2﹣x﹣12=0,(x+3)(x﹣4)=0,x+3=0或x﹣4=0,∴x1=﹣3,x2=4; (2)∵方程有两个实数根,∴△≥0,即(﹣1)2﹣4×1×(a﹣1)≥0,解得; (3)∵是方程的两个实数根,. ∵[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,∴,把 代入,得:[2+a﹣1][2+a﹣1]=9,即(1+a)2=9,解得:a=﹣4,a=2(舍去),所以a的值为﹣4. 点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系. 4.解方程:. 【答案】x=或x=1 【解析】 【分析】 设,则原方程变形为y2-2y-3=0, 解这个一元二次方程求y,再求x. 【详解】 解:设,则原方程变形为y2-2y-3=0. 解这个方程,得y1=-1,y2=3, ∴或. 解得x=或x=1. 经检验:x=或x=1都是原方程的解. ∴原方程的解是x=或x=1. 【点睛】 考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根. 5.有一个人患了流感,经过两轮传染后共有36人患了流感. (1)求每轮传染中平均一个人传染了几个人? (2)如果不及时控制,第三轮将又有多少人被传染? 【答案】(1)5;(2)180 【解析】 【分析】 (1)设平均一人传染了x人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可; (2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可. 【详解】 (1)设每轮传染中平均一个人传染了x个人,根据题意得: x+1+(x+1)x=36, 解得:x=5或x=﹣7(舍去). 答:每轮传染中平均一个人传染了5个人; (2)根据题意得:5×36=180(个), 答:第三轮将又有180人被传染. 【点睛】 本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程. 6.沙坪坝区各街道居民积极响应“创文明城区”活动,据了解,某街道居民人口共有7.5万人,街道划分为A,B两个社区,B社区居民人口数量不超过A社区居民人口数量的2倍. (1)求A社区居民人口至少有多少万人? (2)街道工作人员调查A,B两个社区居民对“社会主义核心价值观”知晓情况发现:A社区有1.2万人知晓,B社区有1.5万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A社区的知晓人数平均月增长率为m%,B社区的知晓人数第一个月增长了m%,第二月在第一个月的基础上又增长了2m%,两个月后,街道居民的知晓率达到92%,求m的值. 【答案】(1)A社区居民人口至少有2.5万人;(2)m的值为50. 【解析】 【分析】 (1)设A社区居民人口有x万人,根据“B社区居民人口数量不超过A社区居民人口数量的2倍”列出不等式求解即可; (2)A社区的知晓人数+B社区的知晓人数=7.5×92%,据此列出关于m的方程并解答. 【详解】 解:(1)设A社区居民人口有x万人,则B社区有(7.5-x)万人, 依题意得:7.5-x≤2x, 解得x≥2.5. 即A社区居民人口至少有2.5万人; (2)依题意得:1.2(1+m%)2+1.5×(1+m%)+1.5×(1+m%)(1+2m%)=7.5×92%, 解得m=50 答:m的值为50. 【点睛】 本题考查了一元二次方程和一元一次不等式的应用,解题的关键是读懂题意,找到题中相关数据的数量关系,列出不等式或方程. 7.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y(只)与销售单价x(元)之间的关系式为y=﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元? 【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元 【解析】 【分析】 表示出一件的利润为(x﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题. 【详解】 设每天获得的利润为w元, 根据题意得:w=(x﹣30)y=(x﹣30)(﹣10x+700)=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000. ∵a=﹣10<0, ∴当x=50时,w取最大值,最大值为4000. 答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元. 【点睛】 本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键. 8.某社区决定把一块长,宽的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边为何值时,活动区的面积达到? 【答案】当时,活动区的面积达到 【解析】 【分析】 根据“活动区的面积=矩形空地面积﹣阴影区域面积”列出方程,可解答. 【详解】 解:设绿化区宽为y,则由题意得 . 即 列方程: 解得 (舍),. ∴当时,活动区的面积达到 【点睛】 本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心. 9.已知x=﹣1是关于x的方程x2+2ax+a2=0的一个根,求a的值. 【答案】1 【解析】试题分析:根据一元二次方程解的定义,把x=﹣1代入x2+2ax+a2=0得到关于a的一元二次方程1﹣2a+a2=0,然后解此一元二次方程即可. 试题解析:把x=﹣1代入x2+2ax+a2=0得 1﹣2a+a2=0, 解得a1=a2=1, 所以a的值为1. 10.某水果店销售某品牌苹果,该苹果每箱的进价是40元,若每箱售价60元,每星期可卖180箱.为了促销,该水果店决定降价销售.市场调查反映:若售价每降价1元,每星期可多卖10箱.设该苹果每箱售价x元(40≤x≤60),每星期的销售量为y箱. (1)求y与x之间的函数关系式; (2)当每箱售价为多少元时,每星期的销售利润达到3570元? (3)当每箱售价为多少元时,每星期的销售利润最大,最大利润多少元? 【答案】(1)y=-10x+780;(2) 57;(3)当售价为59元时,利润最大,为3610元 【解析】 【分析】 (1)根据售价每降价1元,每星期可多卖10箱,设售价x元,则多销售的数量为60-x, (2)解一元二次方程即可求解, (3)表示出最大利润将函数变成顶点式即可求解. 【详解】 解:(1)∵售价每降价1元,每星期可多卖10箱, 设该苹果每箱售价x元(40≤x≤60),则y=180+10(60-x)=-10x+780,(40≤x≤60), (2)依题意得: (x-40)(-10x+780)=3570, 解得:x=57, ∴当每箱售价为57元时,每星期的销售利润达到3570元. (3)设每星期的利润为w, W=(x-40)(-10x+780)=-10(x-59)2+3610, ∵-100,二次函数向下,函数有最大值, 当x=59时, 利润最大,为3610元. 【点睛】 本题考查了二次函数的实际应用,中等难度,熟悉二次函数的实际应用是解题关键. 11.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销. (1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率; (2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元? 【答案】(1)两次下降的百分率为10%; (2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元. 【解析】 【分析】 (1)设每次降价的百分率为 x,(1﹣x)2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可; (2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可 【详解】 解:(1)设每次降价的百分率为 x. 40×(1﹣x)2=32.4 x=10%或 190%(190%不符合题意,舍去) 答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%; (2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元, 由题意,得 解得:=1.5,=2.5, ∵有利于减少库存,∴y=2.5. 答:要使商场每月销售这种商品的利润达到 510 元,且更有利于减少库存,则每件商品应降价 2.5 元. 【点睛】 此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可. 12.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大? 【答案】裁掉的正方形的边长为2dm,底面积为12dm2. 【解析】 试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长. 试题解析: 设裁掉的正方形的边长为xdm, 由题意可得(10-2x)(6-2x)=12, 即x2-8x+12=0,解得x=2或x=6(舍去), 答:裁掉的正方形的边长为2dm,底面积为12dm2. 13.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长. (1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由; (2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由; (3)如果△ABC是等边三角形,试求这个一元二次方程的根. 【答案】(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1. 【解析】 试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状; (2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状; (3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可. 试题解析:(1)△ABC是等腰三角形; 理由:∵x=﹣1是方程的根, ∴(a+c)×(﹣1)2﹣2b+(a﹣c)=0, ∴a+c﹣2b+a﹣c=0, ∴a﹣b=0, ∴a=b, ∴△ABC是等腰三角形; (2)∵方程有两个相等的实数根, ∴(2b)2﹣4(a+c)(a﹣c)=0, ∴4b2﹣4a2+4c2=0, ∴a2=b2+c2, ∴△ABC是直角三角形; (3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为: 2ax2+2ax=0, ∴x2+x=0, 解得:x1=0,x2=﹣1. 考点:一元二次方程的应用. 14.今年以来猪肉价格不断走高,引起了民众与区政府的高度关注,当市场猪肉的平均价格每 千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至 11月 10 日,猪排骨价格不断走高,11 月 10 日比年初价格上涨了 75%.今年 11 月 10 日某市 民于 A 超市购买 5 千克猪排骨花费 350 元. (1)A 超市 11 月排骨的进货价为年初排骨售价的倍,按 11 月 10 日价格出售,平均一天能销售出 100 千克,超市统计发现:若排骨的售价每千克下降 1 元,其日销售量就增加 20千克,超市为了实现销售排骨每天有 1000 元的利润,为了尽可能让顾客优惠应该将排骨的 售价定位为每千克多少元? (2)11 月 11 日,区政府决定投入储备猪肉并规定排骨在 11 月 10 日售价的基础上下调 a%出售,A 超市按规定价出售一批储备排骨,该超市在非储备排骨的价格不变情况下,该天的两种猪排骨总销量比 11 月 10 日增加了 a%,且储备排骨的销量占总销量的,两种排骨销售的总金额比 11 月 10 日提高了a%,求 a 的值. 【答案】(1)售价为每千克65元;(2)a=35. 【解析】 【分析】 (1)先根据题意计算出11月10的售价和11月的进货价,设每千克降价x元,则每千克的利润为10-x元,日销量为100+20x 千克,根据销量×单利润=总利润列出方程求解,并根据为了尽可能让顾客优惠,对所得的解筛选; (2)根据销售总金额=储备排骨销售单价×储备排骨销售数量+非储备排骨销售单价×非储备排骨销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出结论. 【详解】 解:(1)11月10日的售价为350÷5=70元/千克 年初的售价为:350÷5÷175%=40元/千克, 11月的进货价为: 元/千克 设每千克降价x元,则每千克的利润为70-60-x=10-x元,日销量为100+20x 千克 则, 解得, 因为为了尽可能让顾客优惠,所以降价5元,则售价为每千克65元. (2)根据题意可得 解得,(舍去) 所以a=35. 【点睛】 本题考查一元二次方程的应用,(1)中理清销售量随着单价的变化而变化的数量关系是解题关键;(2)中在求解时有些难度,可先设令,解方程求出t后再求a的值. 15.已知关于的方程有两个不相等的实数根,. 求的取值范围. 是否存在实数,使方程的两实数根互为相反数? 【答案】(1)且;(2)不存在,理由见解析 【解析】 【分析】 (1)因为方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2.得出其判别式△>0,可解得k的取值范围; (2)假设存在两根的值互为相反数,根据根与系数的关系,列出对应的不等式即可求出k的值. 【详解】 (1)方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2,可得:k﹣1≠0且△=﹣12k+13>0,解得:k<且k≠1; (2)假设存在两根的值互为相反数,设为 x1,x2. ∵x1+x2=0,∴﹣=0,∴k=. 又∵k<且k≠1,∴k不存在. 【点睛】 本题主要考查了根与系数的关系,属于基础题,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 文学艺术 > 报告文学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服