ImageVerifierCode 换一换
格式:DOC , 页数:10 ,大小:262.54KB ,
资源ID:5195779      下载积分:8 金币
验证码下载
登录下载
邮箱/手机:
图形码:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/5195779.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请。


权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4009-655-100;投诉/维权电话:18658249818。

注意事项

本文(全国中考数学一元二次方程组的综合中考真题汇总及答案.doc)为本站上传会员【人****来】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

全国中考数学一元二次方程组的综合中考真题汇总及答案.doc

1、全国中考数学一元二次方程组的综合中考真题汇总及答案 一、一元二次方程 1.已知关于x的一元二次方程(x﹣3)(x﹣4)﹣m2=0. (1)求证:对任意实数m,方程总有2个不相等的实数根; (2)若方程的一个根是2,求m的值及方程的另一个根. 【答案】(1)证明见解析;(2)m的值为±,方程的另一个根是5. 【解析】 【分析】 (1)先把方程化为一般式,利用根的判别式△=b2-4ac证明判断即可; (2)根据方程的根,利用代入法即可求解m的值,然后还原方程求出另一个解即可. 【详解】 (1)证明: ∵(x﹣3)(x﹣4)﹣m2=0, ∴x2﹣7x+12﹣m2=0,

2、 ∴△=(﹣7)2﹣4(12﹣m2)=1+4m2, ∵m2≥0, ∴△>0, ∴对任意实数m,方程总有2个不相等的实数根; (2)解:∵方程的一个根是2, ∴4﹣14+12﹣m2=0,解得m=±, ∴原方程为x2﹣7x+10=0,解得x=2或x=5, 即m的值为±,方程的另一个根是5. 【点睛】 此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键. 当△=b2-4ac>0时,方程有两个不相等的实数根; 当△=b2-4ac=0时,方程有两个相等的实数根; 当△=b2-4ac<0时,方程没有实数根. 2.计算题  (1)先化简,

3、再求值:÷(1+),其中x=2017. (2)已知方程x2﹣2x+m﹣3=0有两个相等的实数根,求m的值. 【答案】(1)2018;(2)m=4 【解析】 分析:(1)根据分式的运算法则和运算顺序,先算括号里面的,再算除法,注意因式分解的作用; (2)根据一元二次方程的根的判别式求解即可. 详解:(1)÷(1+) = = =x+1, 当x=2017时,原式=2017+1=2018 (2)解:∵方程x2﹣2x+m﹣3=0有两个相等的实数根, ∴△=(﹣2)2﹣4×1×(m﹣3)=0, 解得,m=4 点睛:此题主要考查了分式的混合运算和一元二次方程的根的判别式

4、关键是熟记分式方程的运算顺序和法则,注意通分约分的作用. 3.已知关于x的一元二次方程x2﹣x+a﹣1=0. (1)当a=﹣11时,解这个方程; (2)若这个方程有两个实数根x1,x2,求a的取值范围; (3)若方程两个实数根x1,x2满足[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,求a的值. 【答案】(1)(2)(3)-4 【解析】 分析:(1)根据一元二次方程的解法即可求出答案; (2)根据判别式即可求出a的范围; (3)根据根与系数的关系即可求出答案. 详解:(1)把a=﹣11代入方程,得x2﹣x﹣12=0,(x+3)(x﹣4)=0,x

5、3=0或x﹣4=0,∴x1=﹣3,x2=4; (2)∵方程有两个实数根,∴△≥0,即(﹣1)2﹣4×1×(a﹣1)≥0,解得; (3)∵是方程的两个实数根,. ∵[2+x1(1﹣x1)][2+x2(1﹣x2)]=9,∴,把 代入,得:[2+a﹣1][2+a﹣1]=9,即(1+a)2=9,解得:a=﹣4,a=2(舍去),所以a的值为﹣4. 点睛:本题考查了一元二次方程,解题的关键是熟练运用判别式以及根与系数的关系. 4.解方程:. 【答案】x=或x=1 【解析】 【分析】 设,则原方程变形为y2-2y-3=0, 解这个一元二次方程求y,再求x

6、. 【详解】 解:设,则原方程变形为y2-2y-3=0. 解这个方程,得y1=-1,y2=3, ∴或. 解得x=或x=1. 经检验:x=或x=1都是原方程的解. ∴原方程的解是x=或x=1. 【点睛】 考查了还原法解分式方程,用换元法解一些复杂的分式方程是比较简单的一种方法,根据方程特点设出相应未知数,解方程能够使问题简单化,注意求出方程解后要验根. 5.有一个人患了流感,经过两轮传染后共有36人患了流感. (1)求每轮传染中平均一个人传染了几个人? (2)如果不及时控制,第三轮将又有多少人被传染? 【答案】(1)5;(2)180 【解析】 【分析】 (

7、1)设平均一人传染了x人,根据有一人患了流感,经过两轮传染后共有36人患了流感,列方程求解即可; (2)根据每轮传染中平均一个人传染的人数和经过两轮传染后的人数,列出算式求解即可. 【详解】 (1)设每轮传染中平均一个人传染了x个人,根据题意得: x+1+(x+1)x=36, 解得:x=5或x=﹣7(舍去). 答:每轮传染中平均一个人传染了5个人; (2)根据题意得:5×36=180(个), 答:第三轮将又有180人被传染. 【点睛】 本题考查一元二次方程的应用,解题的关键是能根据题意找到等量关系并列方程. 6.沙坪坝区各街道居民积极响应“创文明城区”活动,据了解,某

8、街道居民人口共有7.5万人,街道划分为A,B两个社区,B社区居民人口数量不超过A社区居民人口数量的2倍. (1)求A社区居民人口至少有多少万人? (2)街道工作人员调查A,B两个社区居民对“社会主义核心价值观”知晓情况发现:A社区有1.2万人知晓,B社区有1.5万人知晓,为了提高知晓率,街道工作人员用了两个月的时间加强宣传,A社区的知晓人数平均月增长率为m%,B社区的知晓人数第一个月增长了m%,第二月在第一个月的基础上又增长了2m%,两个月后,街道居民的知晓率达到92%,求m的值. 【答案】(1)A社区居民人口至少有2.5万人;(2)m的值为50. 【解析】 【分析】 (1)设A社

9、区居民人口有x万人,根据“B社区居民人口数量不超过A社区居民人口数量的2倍”列出不等式求解即可; (2)A社区的知晓人数+B社区的知晓人数=7.5×92%,据此列出关于m的方程并解答. 【详解】 解:(1)设A社区居民人口有x万人,则B社区有(7.5-x)万人, 依题意得:7.5-x≤2x, 解得x≥2.5. 即A社区居民人口至少有2.5万人; (2)依题意得:1.2(1+m%)2+1.5×(1+m%)+1.5×(1+m%)(1+2m%)=7.5×92%, 解得m=50 答:m的值为50. 【点睛】 本题考查了一元二次方程和一元一次不等式的应用,解题的关键是读懂题意,找到

10、题中相关数据的数量关系,列出不等式或方程. 7.小王经营的网店专门销售某种品牌的一种保温杯,成本为30元/只,每天销售量y(只)与销售单价x(元)之间的关系式为y=﹣10x+700(40≤x≤55),求当销售单价为多少元时,每天获得的利润最大?最大利润是多少元? 【答案】当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元 【解析】 【分析】 表示出一件的利润为(x﹣30),根据总利润=单件利润乘以销售数量,整理成顶点式即可解题. 【详解】 设每天获得的利润为w元, 根据题意得:w=(x﹣30)y=(x﹣30)(﹣10x+700)=﹣10x2+1000x﹣21

11、000=﹣10(x﹣50)2+4000. ∵a=﹣10<0, ∴当x=50时,w取最大值,最大值为4000. 答:当销售单价为50元时,每天获得的利润最大,利润的最大值为4000元. 【点睛】 本题考查了一元二次函数的实际应用,中等难度,熟悉函数的性质是解题关键. 8.某社区决定把一块长,宽的矩形空地建成居民健身广场,设计方案如图,阴影区域为绿化区(四块绿化区为大小形状都相同的矩形) ,空白区域为活动区,且四周的4个出口宽度相同,当绿化区较长边为何值时,活动区的面积达到? 【答案】当时,活动区的面积达到 【解析】 【分析】 根据“活动区的面积=矩形空地面积﹣阴影区域

12、面积”列出方程,可解答. 【详解】 解:设绿化区宽为y,则由题意得 . 即 列方程: 解得 (舍),. ∴当时,活动区的面积达到 【点睛】 本题是一元二次方程的应用题,确定等量关系是关键,本题计算量大,要细心. 9.已知x=﹣1是关于x的方程x2+2ax+a2=0的一个根,求a的值. 【答案】1 【解析】试题分析:根据一元二次方程解的定义,把x=﹣1代入x2+2ax+a2=0得到关于a的一元二次方程1﹣2a+a2=0,然后解此一元二次方程即可. 试题解析:把x=﹣1代入x2+2ax+a2=0得 1﹣2a+a2=0, 解得a1=a2=1, 所以a的值

13、为1. 10.某水果店销售某品牌苹果,该苹果每箱的进价是40元,若每箱售价60元,每星期可卖180箱.为了促销,该水果店决定降价销售.市场调查反映:若售价每降价1元,每星期可多卖10箱.设该苹果每箱售价x元(40≤x≤60),每星期的销售量为y箱. (1)求y与x之间的函数关系式; (2)当每箱售价为多少元时,每星期的销售利润达到3570元? (3)当每箱售价为多少元时,每星期的销售利润最大,最大利润多少元? 【答案】(1)y=-10x+780;(2) 57;(3)当售价为59元时,利润最大,为3610元 【解析】 【分析】 (1)根据售价每降价1元,每星期可多卖10箱,设

14、售价x元,则多销售的数量为60-x, (2)解一元二次方程即可求解, (3)表示出最大利润将函数变成顶点式即可求解. 【详解】 解:(1)∵售价每降价1元,每星期可多卖10箱, 设该苹果每箱售价x元(40≤x≤60),则y=180+10(60-x)=-10x+780,(40≤x≤60), (2)依题意得: (x-40)(-10x+780)=3570, 解得:x=57, ∴当每箱售价为57元时,每星期的销售利润达到3570元. (3)设每星期的利润为w, W=(x-40)(-10x+780)=-10(x-59)2+3610, ∵-100,二次函数向下,函数有最大值, 当

15、x=59时, 利润最大,为3610元. 【点睛】 本题考查了二次函数的实际应用,中等难度,熟悉二次函数的实际应用是解题关键. 11.某商场一种商品的进价为每件30元,售价为每件40元.每天可以销售48件,为尽快减少库存,商场决定降价促销. (1)若该商品连续两次下调相同的百分率后售价降至每件32.4元,求两次下降的百分率; (2)经调查,若该商品每降价0.5元,每天可多销售4件,那么每天要想获得510元的利润,每件应降价多少元? 【答案】(1)两次下降的百分率为10%; (2)要使每月销售这种商品的利润达到510元,且更有利于减少库存,则商品应降价2.5元.

16、 【解析】 【分析】 (1)设每次降价的百分率为 x,(1﹣x)2 为两次降价后的百分率,40元 降至 32.4元 就是方程的等量条件,列出方程求解即可; (2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价 y 元,由销售问题的数量关系建立方程求出其解即可 【详解】 解:(1)设每次降价的百分率为 x. 40×(1﹣x)2=32.4 x=10%或 190%(190%不符合题意,舍去) 答:该商品连续两次下调相同的百分率后售价降至每件 32.4元,两次下降的百分率为10%; (2)设每天要想获得 510 元的利润,且更有利于减少库存,则每件商品应降价

17、y 元, 由题意,得 解得:=1.5,=2.5, ∵有利于减少库存,∴y=2.5. 答:要使商场每月销售这种商品的利润达到 510 元,且更有利于减少库存,则每件商品应降价 2.5 元. 【点睛】 此题主要考查了一元二次方程的应用,关键是根据题意找到等式两边的平衡条件,这种价格问题主要解决价格变化前后的平衡关系,列出方程,解答即可. 12.工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大? 【答案】裁掉的正方形的边长为2dm,底面积为12dm2.

18、 【解析】 试题分析:设裁掉的正方形的边长为xdm,则制作无盖的长方体容器的长为(10-2x)dm,宽为(6-2x)dm,根据长方体底面面积为12dm2列出方程,解方程即可求得裁掉的正方形边长. 试题解析: 设裁掉的正方形的边长为xdm, 由题意可得(10-2x)(6-2x)=12, 即x2-8x+12=0,解得x=2或x=6(舍去), 答:裁掉的正方形的边长为2dm,底面积为12dm2. 13.已知关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长. (1)如果x=﹣1是方程的根,试判断△ABC的形状,并说明理由; (2)如

19、果方程有两个相等的实数根,试判断△ABC的形状,并说明理由; (3)如果△ABC是等边三角形,试求这个一元二次方程的根. 【答案】(1) △ABC是等腰三角形;(2)△ABC是直角三角形;(3) x1=0,x2=﹣1. 【解析】 试题分析:(1)直接将x=﹣1代入得出关于a,b的等式,进而得出a=b,即可判断△ABC的形状; (2)利用根的判别式进而得出关于a,b,c的等式,进而判断△ABC的形状; (3)利用△ABC是等边三角形,则a=b=c,进而代入方程求出即可. 试题解析:(1)△ABC是等腰三角形; 理由:∵x=﹣1是方程的根, ∴(a+c)×(﹣1)2﹣2b+(a﹣

20、c)=0, ∴a+c﹣2b+a﹣c=0, ∴a﹣b=0, ∴a=b, ∴△ABC是等腰三角形; (2)∵方程有两个相等的实数根, ∴(2b)2﹣4(a+c)(a﹣c)=0, ∴4b2﹣4a2+4c2=0, ∴a2=b2+c2, ∴△ABC是直角三角形; (3)当△ABC是等边三角形,∴(a+c)x2+2bx+(a﹣c)=0,可整理为: 2ax2+2ax=0, ∴x2+x=0, 解得:x1=0,x2=﹣1. 考点:一元二次方程的应用. 14.今年以来猪肉价格不断走高,引起了民众与区政府的高度关注,当市场猪肉的平均价格每 千克达到一定的单价时,政府将投入储备猪肉以

21、平抑猪肉价格.据统计:从今年年初至 11月 10 日,猪排骨价格不断走高,11 月 10 日比年初价格上涨了 75%.今年 11 月 10 日某市 民于 A 超市购买 5 千克猪排骨花费 350 元. (1)A 超市 11 月排骨的进货价为年初排骨售价的倍,按 11 月 10 日价格出售,平均一天能销售出 100 千克,超市统计发现:若排骨的售价每千克下降 1 元,其日销售量就增加 20千克,超市为了实现销售排骨每天有 1000 元的利润,为了尽可能让顾客优惠应该将排骨的 售价定位为每千克多少元? (2)11 月 11 日,区政府决定投入储备猪肉并规定排骨在 11 月 10 日售价的基础上

22、下调 a%出售,A 超市按规定价出售一批储备排骨,该超市在非储备排骨的价格不变情况下,该天的两种猪排骨总销量比 11 月 10 日增加了 a%,且储备排骨的销量占总销量的,两种排骨销售的总金额比 11 月 10 日提高了a%,求 a 的值. 【答案】(1)售价为每千克65元;(2)a=35. 【解析】 【分析】 (1)先根据题意计算出11月10的售价和11月的进货价,设每千克降价x元,则每千克的利润为10-x元,日销量为100+20x 千克,根据销量×单利润=总利润列出方程求解,并根据为了尽可能让顾客优惠,对所得的解筛选; (2)根据销售总金额=储备排骨销售单价×储备排骨销售数量+非

23、储备排骨销售单价×非储备排骨销售数量,即可得出关于a的一元二次方程,解之取其正值即可得出结论. 【详解】 解:(1)11月10日的售价为350÷5=70元/千克 年初的售价为:350÷5÷175%=40元/千克, 11月的进货价为: 元/千克 设每千克降价x元,则每千克的利润为70-60-x=10-x元,日销量为100+20x 千克 则, 解得, 因为为了尽可能让顾客优惠,所以降价5元,则售价为每千克65元. (2)根据题意可得 解得,(舍去) 所以a=35. 【点睛】 本题考查一元二次方程的应用,(1)中理清销售量随着单价的变化而变化的数量关系是解题关键;(2)中在

24、求解时有些难度,可先设令,解方程求出t后再求a的值. 15.已知关于的方程有两个不相等的实数根,. 求的取值范围. 是否存在实数,使方程的两实数根互为相反数? 【答案】(1)且;(2)不存在,理由见解析 【解析】 【分析】 (1)因为方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2.得出其判别式△>0,可解得k的取值范围; (2)假设存在两根的值互为相反数,根据根与系数的关系,列出对应的不等式即可求出k的值. 【详解】 (1)方程(k﹣1)x2+(2k﹣3)x+k+1=0有两个不相等的实数根x1,x2,可得:k﹣1≠0且△=﹣12k+13>0,解得:k<且k≠1; (2)假设存在两根的值互为相反数,设为 x1,x2. ∵x1+x2=0,∴﹣=0,∴k=. 又∵k<且k≠1,∴k不存在. 【点睛】 本题主要考查了根与系数的关系,属于基础题,关键掌握x1,x2是方程x2+px+q=0的两根时,x1+x2=﹣p,x1x2=q.

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服