资源描述
人教版五年级上册数学应用题附答案
1.实验小学图书室童话书和故事书各15本,童话书每本16.8元,故事书每本13.2元。购进这些书共需要多少钱?
2.大米、面粉和食用油的单价如下表。(“■”代表0~9其中的1个数字)
物品
大米
面粉
食用油
单价
6.■8元/kg
8.2■元/kg
47.50元/瓶
(1)张奶奶买10kg大米和5kg面粉。带100元够吗?为什么?
(2)李叔叔买了2瓶食用油,付给售货员100元,应找回多少钱?
3.藏羚羊的奔跑速度大约可达到每分钟1.33千米,非洲猎豹的速度大约是藏羚羊的1.3倍,非洲猎豹的速度每分钟大约是多少千米?(得数保留两位小数)
4.超市地下停车场收费标准:2小时内(含2小时)收费8元;超过2小时,每小时加收2.5元(不足1小时按1小时计算)。爸爸停车7.5小时,需要缴纳多少停车费?
5.每箱装32盒水果,每盒水果2.5千克。一共有420千克水果,5个箱子够用吗?
6.某市自来水公司为鼓励节约用水,采取按月分段计费的方式收取水费。12吨以内的每吨2.5元;超过12吨的部分,每吨3.8元。
(1)小云家上个月的用水量为11吨,应缴水费多少元?
(2)小可家上个月的用水量为18吨,应缴水费多少元?
7.张阿姨给在外省读大学的女儿寄衣服,衣服重5.3kg,需要付多少元快递费?
快递公司收费标准1.1kg以内收费10元。
2.超过1kg的部分按7.5元/kg
收费(不足1kg按1kg计算)。
8.妈妈带100元去超市购物,她买了一条鲈鱼,用去27.57元,买2袋水饺,每袋25.9元。请你估一估,剩下的钱还够买一盒17.9元的鲜牛乳吗?(写出估算过程)
9.某市水费收费标准如下图,小飞家12月用水量为4.8吨,要付水费多少钱?
水费收费标准①3吨以内每吨收费1.1元(包括3吨)
②超过3吨的部分,每吨1.3元(不足1吨,按1吨计算)
10.李叔叔住的宾馆到会议中心的路程是9.5km,根据出租车收费标准,李叔叔打出租车从宾馆到会议中心应付车费多少元?
出租车收费标准(1)3km以内8元;
(2)超过3km部分,每千米1.5元(不足1km按1km计算)。
11.8辆汽车4小时运货95吨,平均每辆汽车每小时运货多少吨?(得数保留两位小数)
12.张明和李军家相距3千米,他们两人步行同时出发去游泳馆游泳,相向而行,20分钟后两人在游泳馆门口相遇。张明每分钟走100米,李军每分钟走多少米?(列方程解答)
13.某小学的学生在公司里铺草坪,五年级学生铺了164平方米,比四年级铺的3倍多8平方米,四年级铺草坪多少平方米?
14.妈妈买了8千克苹果和4千克香蕉,共花了68.8元。已知每千克苹果5.6元,每千克香蕉多少钱?(用方程解答)
15.世界人均土地面积相当于我国人均土地面积的3倍,我国人均土地面积大约比世界人均土地面积少1.56公顷。我国人均土地面积大约是多少公顷?(用方程解)
16.小林家和小云家相距4.5km。两人同时分别从家骑自行车出发,相向而行。小林每分钟骑0.25km,小云每分钟骑0.2km。几分钟后两人相遇?(设x分钟后两人相遇)
(1)琴琴这样列方程:0.25x+0.2x=4.5
等量关系是: 。
(2)童童这样列方程:(0.25+0.2)x=4.5
等量关系是: 。
17.A、B两港口相距210千米,甲、乙两船同时从A、B两个港口出发,相向而行,3小时后相遇。甲船每小时航行38千米,乙船每小时航行多少千米?
18.聪聪和明明家距离996米,他们同时从家出发到学校,12分钟后他们在学校大门相遇,聪聪每分钟走40米,明明每分钟走多少米?(用方程解)
19.上个月小红爸爸的工资比妈妈的工资多2800元,爸爸的工资是妈妈的1.5倍,上个月爸爸、妈妈的工资各是多少元?(先画线段图,再列方程解答)
画线段图:
20.甲车和乙车从相距的两座城市同时出发,相向而行,经过4.2小时相遇。已知乙车每小时行驶比甲车快。甲车每小时行多少千米?(列方程解答)
21.把一桶18.9升的桶装水分装在0.55升的塑料瓶中,需要准备多少个瓶子?
22.甲、乙两车分别从相距300千米的A、B两地同时出发相向而行,已知甲车每小时行40千米,乙车每小时行35千米。填空并回答问题:
(1)相遇时,两车行了( )小时。
(2)相遇时,甲车行了( )千米。
(3)相遇后两车立即返回各自的出发地,这时甲车把速度提高到原来的,乙车速度不变。当甲车返回到A地时,乙车还需多少小时才能到达B地?(写出必要的计算过程)
23.李叔叔用17.5千克的葡萄晒出了3.5千克的葡萄干。
(1)1千克葡萄可以晒葡萄干多少千克?
(2)用多少葡萄可以晒出10.5千克葡萄干?
24.李老师租了一台“充电宝”,当天忘记归还,共使用了26.9小时,他将支付多少钱?
租金说明
①每0.5小时收费1.5元,不足0.5小时按0.5小时计费;
②满24小时收费合计20元,24小时后按时计费。
25.为弘扬尊老、爱老、敬老、助老的传统美德,志愿者张叔叔骑自行车,李叔叔骑摩托车从相距112千米的两地同时出发,相向而行。李叔叔骑摩托车每小时行54千米,若他们经过1.6小时在敬老院相遇,张叔叔骑自行车每小时行多少千米?
26.某县城规定,居民用1吨自来水要收0.85元的污水处理费。张爷爷家本月交了25.5元的污水处理费。自来水价格是1.42元吨。张爷爷家本月共交费多少元?
27.小华和妈妈去超市买了3盒牙膏和2袋洗衣粉,一共花了30.9元,一盒牙膏5.1元,一袋洗衣粉多少钱?
28.两台播种机1.8小时播种5.4公顷,那么每台播种机每小时播种多少公顷?
29.中国联通新年促销活动,每月话费19元通话400分钟,超出400分钟的时间按0.1元/分计算。妈妈办理了这个活动,1月份的话费是25元。妈妈1月份一共打了多少分钟电话?
30.冬冬收集了96枚邮票,比红红收集的3倍少12枚。红红收集了多少枚邮票?
31.围棋社一共有学员48人,男生人数是女生人数的3倍。围棋社的男生女生各有多少人?(列方程解答)
32.—间教室长8.8米,宽5.9米,现要铺上边长为8分米的正方形地砖,100块够吗?
33.一面墙的中间有一个长2米、宽1.5米的窗户(如下图),如果砌这面墙每平方米用砖150块,那么一共用砖多少块?
34.苏大伯家用70米长的竹篱笆在一块靠墙的空地上围了一个直角梯形花圃(如下图), 这个花圃的面积是多少平方米?
35.一块三角形的麦地,底是800米,高是400米,它的面积是多少公顷?如果每公顷收小麦6000千克,这块地能收小麦多少吨?
36.如图,靠墙边围一个花坛,围花坛的篱笆长46m。求这个花坛的面积。
37.某公园有一块梯形草坪(如图),绿化队计划把它扩建成一个长方形。受条件限制,扩建时只把梯形草坪的上底延长,下底和高不变。
①扩建后,面积比原来增加了多少平方米?(提示可以在图上画一画!)
②在扩建的部分铺草坪,草坪的单价是7.8元/m2,购买草坪的预算是1600元。预算的钱够不够?
38.两个正方形相拼,求阴影部分的面积.
39.用一根15.6分米的铁丝刚好围成一个等腰梯形,已知这个梯形的一条腰长4.1分米,面积是12.95平方分米,这个梯形的高是多少分米?
40.一条水渠横截面是梯形(如图)。已知横截面的面积是2.52m2,高是1.2m,渠口宽是渠底的2倍。渠口宽多少米?(用方程解)
41.一条公路长720米,甲、乙两支施工队同时从公路的两端往中间铺柏油。甲队的施工速度是乙队的1.25倍,4天后这条公路全部铺完。甲、乙两队每天分别铺柏油路多少米?(用方程解答)
42.少先队员参加植树活动,五年级去的人数是四年级的1.2倍,五年级去的人数比四年级多20人。原来两个年级各去了多少人?(列方程解答)
43.实验室有大、小两种容量瓶,它们的容积分别为、。李老师把试剂全部分装在了这两种容量瓶中,每个瓶均装满,李老师使用的大容量瓶的数量正好是小容量瓶的2倍。李老师各用了多少个大、小容量瓶?(用方程解)
44.笼子里有白兔、灰兔若干只。白兔的只数是灰兔的3倍,灰兔比白兔少8只,白兔、灰兔各几只?
45.桌子和椅子的单价各是多少元?(列方程解答)
46.丽丽家的果园里有桃树和苹果树共720棵,苹果树的棵数是桃树的2倍,丽丽家有桃树、苹果树各多少棵?(用方程解)
47.张老师买4支同样的钢笔比买1个足球多用42.8元,1个足球的价格是1支钢笔的2倍,1支钢笔多少元?(列方程解答)
48.有甲乙两辆汽车同时从相距525km的两个城市相对开出。甲车的速度是乙车的1.5倍,经过5时相遇。甲乙两车每时分别行多少km?(用方程解答)
49.故事类图书和科普类图书各有多少本?(列方程解答)
50.四边形ABCG、DEFG为长方形,AB=7厘米,AG=4厘米,DE=2厘米,EF=10厘米,那么三角形BCM比三角形DEM的面积大多少平方厘米?
51.一根木头长12米,要把它锯成长度相等的6段,每锯一次需要7分钟,锯完一共需要多少分钟?
52.某复印店对于用A4纸复印的收费标准如下表。
项目
收费标准
普通A4纸复印
20张以内(含20张),0.5元/张
超过20张的部分,0.4元/张
彩色A4纸复印
0.8元/张
兰兰要复印一份资料,需要用48张普通A4纸,她复印这份资料应付多少钱?
53.新华图书馆借阅收费标准如下:
3天内5元,超过3天就延期付费,每天收费1.5元(不满一天按一天计算),小刚在图书馆借了一本故事书,计划每天看30页,5.5天看完,小刚要付多少元?
(1)我们已经学过很多解决问题的策略,比如:画线段图、画示意图、列表法等,下面我们就用列表法解决这道题吧,根据题意完成下表。
看的天数/天
1
2
3
4
5
6
所付费用/元
列出算式(只列算式,不解答):( )
(2)如果他不想延期付费,每天看多少页?
54.妈妈买了苹果和梨各3kg,共花了27.3元。梨每千克3.8元,苹果每千克多少元?(列方程解答)
55.贝贝和丽丽、红红一起去给第一小组的48名同学买汽水,下图是冷饮店打的广告,如果每瓶汽水1.2元,她们至少用多少钱给大家买汽水,才可使每人都能喝到1瓶汽水?
56.某超市举办“买四送一”促销活动,每盒牛奶2.8元,小华要买20盒,一共需要多少钱?
57.某市的出租车收费标准如下:乘车路程2千米(包括2千米)收费6元,超过2千米的部分每千米收费1.2元(不足1千米按1千米计算),张老师打车上班花了10.8元,张老师家距离学校多少千米?
58.一块花布(如下图)共绣了5朵花,每朵花的宽都是5.4cm,每两朵花之间的距离是1.6cm,这块花布一共长多少厘米?
59.某市按照以下标准收取水费:10吨及以下的部分,每吨收费1.55元,10吨至20吨的部分,每吨收费增加0.65元,20吨以上的部分,每吨收费2.5元。如果李叔叔家一月份的水费付了40元,那么李叔叔家一月份用水多少吨?
60.一个圆形池塘的周长是300米,每隔6米栽种一棵柳树,池塘一周需要栽柳树多少棵?
61.某市家庭用电收费标准如下:每月用电200千瓦时(含200千瓦时)以内的,每千瓦时收费0.55元;每月超过200千瓦时的部分,每千瓦时收费0.75元。刘老师家12月份家庭用电220千瓦时,应付电费多少元?
62.体育课上,五(2)班42名同学围成一个圆圈做游戏。每相邻两个同学之间的距离都是2米,这个圆圈的周长是多少米?
63.某校五年级同学去参观科技展览。272人排成两路纵队,前后相邻两排各相距0.8米,队伍每分钟走60米。现在要过一座长810米的桥,从排头两人上桥到排尾两人离开桥,共需要多少分?
64.林荫大道两侧从头到尾栽树,一侧栽杨树91棵,每相邻两棵杨树之间相距10 m;另一侧栽柳树,每相邻两棵柳树之间相距9 m.栽柳树多少棵?
65.绿化公司准备给一条长为2000米的公路两旁栽树,每隔4米栽一棵.
(1)如果两端都栽一棵,需多少棵树?
(2)如果只有一端栽树,需多少棵树?
(3)如果两端都不栽树,需要多少棵树?
66.扬州市在一座长的大桥两侧安装霓虹灯,每隔安装一盏.如果大桥两端都要安装,一共要安装多少盏霓虹灯?
67.木工师傅要把一根长3.6米的木条锯成40厘米长的小木条,每锯一段用时2分钟,请你帮师傅算一算锯完这条木条共需要几分钟?
68.妈妈到超市买大米,发现原来单价是每千克48元的大米正在搞促销,现在单价为每千克45元。妈妈原来买30千克大米的钱现在可以多买多少千克?
69.琳琳准备购买4千克苹果和2千克葡萄。
70.建材仓库有一批水泥管,一层一层堆成梯形,最上面一层有5根水泥管,下面的一层总是比上面的一层多1根,一共堆6层。这批水泥管有多少根?
【参考答案】
1.450元
【解析】
根据单价×数量=总价,分别求出童话书和故事书的总价,然后相加即可。
16.8×15+13.2×15
=(16.8+13.2)×15
=30×15
=450(元)
答:购进这些书共需要450元。
【点睛】
本题考查单价、数量和总价,明确它们之间的关系是解题的关键。
2.(1)不够;见详解
(2)5元
【解析】
(1)从表中可知,大米的单价超过6元,看作6元;面粉的单价超过8元,看作8元;根据单价×数量=总价,分别计算出买10kg大米和5kg面粉的价钱,再相加,就是总价,与带的100元相比较,如果大于或等于100元,就不够,反之就够。
(2)根据单价×数量=总价,求出2瓶食用油的价钱,再用付给售货员的100元减去总去2瓶食用油的价钱,就是应找回的钱数。
(1)6.■8≈6
8.2■≈8
6×10+8×5
=60+40
=100(元)
6.■8×10+8.2■×5>100,不够。
答:不够,把大米的单价看作6元、面粉的单价看作8元,都比实际的单价少,总价正好是100元,那么实际的总价大于100元,所以不够。
(2)47.5×2=95(元)
100-95=5(元)
答:应找回5元。
【点睛】
本题考查小数乘法的计算以及用估算的方法解决实际问题,掌握单价、数量、总价之间的关系是解题的关键。
3.73千米
【解析】
根据求一个数的几倍是多少,用乘法计算即用藏羚羊的奔跑速度乘1.3就是,非洲猎豹的速度,结果根据四舍五入法保留两位小数即可。
1.33×1.3≈1.73(千米)
答:非洲猎豹的速度每分钟大约是1.73千米。
【点睛】
本题考查求一个数的几倍是多少,明确用乘法是解题的关键。
4.23元
【解析】
首先根据总价=单价×时间,求出超过2小时的停车费是多少;然后用它加上2小时内(包括2小时)的收费,求出应交停车费多少元即可。
把7.5小时看作8小时
(8-2)×2.5
=6×2.5
=15(元)
15+8=23(元)
答:需要缴纳23元停车费。
【点睛】
此题主要考查了小数乘法意义的应用,解答此题的关键是熟练掌握单价、总价、时间的关系。
5.不够用
【解析】
用每箱盒子数×每盒质量×箱子数,求出5个箱子能装的质量,与420千克比较即可。
32×2.5×5
=80×5
=400(千克)
400<420
答:5个箱子不够用。
【点睛】
关键是掌握小数乘法的计算方法。
6.(1)27.5元
(2)52.8元
【解析】
(1)在12吨以内的用水量,用吨数乘每吨水的单价即可;
(2)用12吨用水量乘12吨以内每吨水的单价,计算出12吨以内用水的价钱,超出12吨的用水量,用多出的吨数乘超出12吨后每吨水的单价,得出超出部分的价钱,两部分的费用加起来即可。
(1)11×2.5=27.5(元)
答:应缴水费27.5元。
(2)12×2.5+(18-12)×3.8
=30+6×3.8
=30+22.8
=52.8(元)
答:应缴水费52.8元。
【点睛】
此题的解题关键是采取分段计费的办法,计算出每一段的费用,再加起来即可。
7.5元
【解析】
根据重量×单价=总价先求出超出1kg的部分的费用,再加上10元即可。
5.3≈6
(6-1)×7.5+10
=37.5+10
=47.5(元)
答:需要付47.5元快递费。
【点睛】
此题考查的是分段计费问题,解答此题关键是找准收费标准,然后根据单价×数量=总价把各段费用相加。
8.够买
【解析】
将鲈鱼和水饺的单价进行估大为相近的整数,然后根据单价×数量=总价,求出一条鲈鱼和2袋水饺的总价,用100减去它们的总价,然后与17.9元进行对比即可。
27.57元≈28元 25.9元≈26元
28+26×2
=28+52
=80(元)
100-80=20(元)
20>17.9
答:把所买物品单价估多了都够买,所以一定够买。
【点睛】
本题考查单价、数量和总价的关系,明确它们之间的关系是解题的关键。
9.9元
【解析】
小飞家12月用水量为4.8吨,按5吨计算,3吨按每吨1.1元收费,超过的(5-3)吨按每吨1.3元收费,最后求出两种费用之和,据此解答。
4.8吨≈5吨
3×1.1+(5-3)×1.3
=3×1.1+2×1.3
=3.3+2.6
=5.9(元)
答:要付水费5.9元。
【点睛】
根据“总价=单价×数量”求出不同阶段的费用是解答题目的关键。
10.5元
【解析】
将9.5千米分成3千米的部分和超过3千米的部分,然后分别按照收费标准计算,最后加在一起。需要注意的是,超出的部分要先转换成整千米数。
9.5-3=6.5(千米)≈7(千米)
7×1.5+8
=10.5+8
=18.5(元)
答:李叔叔打出租车从宾馆到会议中心应付车费18.5元。
【点睛】
本题考查分段付费的问题,根据分段标准分开计算是解题关键。
11.97吨
【解析】
运的货物总质量÷时间÷汽车辆数=平均每辆汽车每小时运货多少吨,据此列式解答。
95÷4÷8
=23.75÷8
≈2.97(吨)
答:平均每辆汽车每小时运货2.97吨。
【点睛】
关键是掌握小数除法的计算方法,掌握用四舍五入法保留近似数。
12.50米
【解析】
根据题意,等量关系:(张明的速度+李军的速度)×相遇时间=张明和李军家相距的距离,据此列出方程,并求解;注意单位的换算:1千米=1000米。
3千米=3000米
解:设李军每分钟走米。
(100+)×20=3000
(100+)×20÷20=3000÷20
100+=150
100+-100=150-100
=50
答:李军每分钟走50米。
【点睛】
掌握相遇问题中,速度和、相遇时间、路程之间的关系是解题的关键。
13.52平方米
【解析】
把四年级铺草坪的面积设为未知数,等量关系式:四年级铺草坪的面积×3+8平方米=五年级铺草坪的面积,据此列方程解答。
解:设四年级铺草坪x平方米。
3x+8=164
3x=164-8
3x=156
x=156÷3
x=52
答:四年级铺草坪52平方米。
【点睛】
分析题意找出等量关系式是解答题目的关键。
14.6元
【解析】
根据等量关系:每千克苹果的价钱×苹果的质量+每千克香蕉的价钱×香蕉的质量=一共花的钱数,据此列出方程,并求解。
解:设每千克香蕉元。
8×5.6+4=68.8
44.8+4=68.8
44.8+4-44.8=68.8-44.8
4=24
4÷4=24÷4
=6
答:每千克香蕉6元钱。
【点睛】
从题目中找到等量关系,按等量关系列出方程是解题的关键。。
15.78公顷
【解析】
由题意可知,设我国人均土地面积为x公顷,则世界人均土地面积为3x公顷,然后根据我国人均土地面积大约比世界人均土地面积少1.56公顷,据此列方程即可。
解:设我国人均土地面积为x公顷,则世界人均土地面积为3x公顷。
3x-x=1.56
2x=1.56
x=0.78
答:我国人均土地面积大约是0.78公顷。
【点睛】
本题考查用方程解决问题,明确数量关系是解题的关键。
16.10分钟;
(1)
(2)
【解析】
设x分钟后两人相遇,速度×时间=路程,根据小林速度×相遇时间+小云速度×相遇时间=总路程;小林和小云速度和×相遇时间=总路程,列出方程解答即可。
(1)解:设x分钟后两人相遇。
0.25x+0.2x=4.5
0.45x÷0.45=4.5÷0.45
x=10
等量关系:小林速度×相遇时间+小云速度×相遇时间=总路程
答:10分钟后两人相遇。
(2)解:设x分钟后两人相遇。
(0.25+0.2)x=4.5
0.45x÷0.45=4.5÷0.45
x=10
等量关系:(小林速度+小云速度)××相遇时间=总路程
答:10分钟后两人相遇。
【点睛】
关键是理解速度、时间、路程之间的关系,用方程解决问题的关键是找到等量关系。
17.A
解析:32千米
【解析】
根据题意,等量关系:(甲船的速度+乙船的速度)×3=A、B两港口的距离,据此列出方程,并求解。
解:设乙船每小时航行千米。
(38+)×3=210
(38+)×3÷3=210÷3
38+=70
38+-38=70-38
=32
答:乙船每小时航行32千米。
【点睛】
根据速度和×相遇时间=路程,得到等量关系,并根据等量关系列出方程是解题的关键。
18.43米
【解析】
将明明的速度设为未知数,两人相遇时,两人的路程和等于两家的距离996米。根据这个数量关系,列方程解方程即可。
解:设明明每分钟走x米。
答:明明每分钟走43米。
【点睛】
本题考查了相遇问题,两人同时相向而行,相遇时两人的路程和等于两地的距离。
19.爸爸8400元,妈妈5600元。
【解析】
可先设出小红妈妈的工资为未知数,可得出小红爸爸工资是她的1.5倍,可列出方程,运用等式基本性质解出方程,即可得出答案。
解:画出线段图:
设小红妈妈的工资为x,小红爸爸的工资为1.5x,则可列出方程:
则小红爸爸的工资为:(元)。
答:上个月小红爸爸的工资是8400元,小红妈妈工资为5600元。
【点睛】
本题主要考查的是运用方程解决实际问题,解题的关键是熟练找出等量关系,进而列出方程得出答案。
20.60千米
【解析】
设甲车每小时行x千米,则乙车每小时行驶(x+15)千米,再根据相遇时间×速度和=相遇路程,据此列出方程解答即可。
解:设甲车每小时行x千米。
2x+15=135
2x=120
答:甲车每小时行60千米。
【点睛】
本题考查列方程解决问题,解答本题的关键是掌握相遇问题中的数量关系。
21.35个
【解析】
用桶装水的量÷塑料瓶容量,结果用进一法保留整数即可。
18.9÷0.55≈35(个)
答:需要准备35个瓶子。
【点睛】
最后无论剩下多少水,都得需要一个瓶子来装。
22.A
解析:(1)4;(2)160;(3)0.8小时
【解析】
(1)先把两车的速度相加,求出速度和,再用总路程除以速度和,就是两车的相遇时间,即两车行驶的时间。
(2)根据速度×时间=路程,用甲车的速度乘4小时即可解答。
(3)根据分数乘法的意义,用甲车的速度乘求出甲车返回的速度,再用甲车行驶的路程除以返回的速度求出返回的时间,再用4小时减去甲车返回的时间(即乙车返回的时间)即可解答。
(1)300÷(35+40)
=300÷75
=4(小时)
(2)40×4=160(千米)
(3)4-160÷(40×)
=4-160÷50
=4-3.2
=0.8(小时)
答:当甲车返回到A地时,乙车还需0.8小时才能到达B地。
【点睛】
本题考查了路程问题的数量关系:速度×时间=路程的灵活运用。
23.(1)0.2千克(2)52.5千克
【解析】
(1)用晒出的葡萄干的质量除以所用葡萄的质量,可以计算出1千克葡萄可以晒葡萄干多少千克;
(2)用晒出的葡萄干的质量除以1千克葡萄可以晒葡萄干质量,可以计算出需要多少葡萄可以晒出10.5千克葡萄干。
(1)3.5÷17.5=0.2(千克)
答:1千克葡萄可以晒葡萄干0.2千克。
(2)10.5÷0.2=52.5(千克)
答:用52.5千克葡萄可以晒出10.5千克葡萄干。
【点睛】
本题考查小数除法的应用,找出等量关系,代入数据进行解答即可。
24.29元
【解析】
26.9小时超过了24小时,所以前24小时收费20元。剩余的部分按照每0.5小时收费1.5元收费,不足0.5小时按照0.5小时收费,先算出有几个0.5小时,再根据总价单价数量,将数据代入,最后再加上20元,据此即可得出答案。
(小时)
因为不足0.5小时按0.5小时计费,所以2.9小时按照3小时计算。
3÷0.5×1.5+20
=6×1.5+20
=9+20
=29(元)
答:他将支付29元。
【点睛】
解答此题需要分情况探讨,明确题目中所给数量属于哪一种情况,由此选择正确的解题方法。
25.16千米
【解析】
根据路程相遇时间速度之和,再用速度之和减去摩托车的速度,即可求得自行车的速度。
112÷1.6-54
=70-54
=16(千米时)
答:张叔叔骑自行车每小时行16千米。
【点睛】
本题考查相遇问题中的基本数量关系“速度和路程相遇时间”的灵活应用。
26.1元
【解析】
首先根据“总价÷单价=数量”,用张爷爷家本月交的污水处理费除以1吨自来水要收的污水处理费,求出张爷爷家本月用的自来水吨数;然后根据“单价×数量=总价”,用1吨自来水的价格乘本月自来水的吨数,求出本月的水费;再用本月的水费加上污水处理费即可。
(元)
答:张爷爷家本月共交费68.1元。
【点睛】
本题考查小数的四则运算法则及应用,掌握单价、数量、总价之间的关系是解题的关键。
27.8元
【解析】
先设出所求问题为x,进而根据“单价×数量=总价”分别计算出买牙膏和洗衣粉的总价,继而根据“买牙膏的钱数+洗衣粉的钱数=一共花的钱数”列出方程,进行解答即可。
解:设一袋洗衣粉x元。
3×5.1+2x=30.9
15.3+2x=30.9
15.3+2x-15.3=30.9-15.3
2x=15.6
2x÷2=15.6÷2
x=7.8
答:一袋洗衣粉7.8元。
【点睛】
解答此题的关键是先设出所求数,进而找出数量间的相等关系式,然后根据相等关系式,列出方程,进行解答即可得出结论。
28.5公顷
【解析】
根据题意,此题可先求出平均每台播种机1.8小时能播种多少公顷,再求出每台每小时播种多少公顷,列出综合算式为5.4÷2÷1.8,由此进行解答即可。
5.4÷2÷1.8
=2.7÷1.8
=1.5(公顷)
答:每台播种机每小时播种1.5公顷。
【点睛】
此题属于连除应用题,解决此题也可以先求出两台播种机平均每小时能播种多少公顷,再求出每台每小时播种多少公顷。
29.460分钟
【解析】
妈妈一月份的话费25元超出了19元,所以妈妈首先打了400分钟的电话。25元超出19元的部分是6元,超出400分钟的时间按0.1元/分计算,那么用6元除以0.1元,可以求出妈妈超出了400分钟几分钟。最后,利用加法求出妈妈一月份一共打了多少分钟的电话。
400+(25-19)÷0.1
=400+6÷0.1
=400+60
=460(分钟)
答:妈妈1月份一共打了460分钟电话。
【点睛】
本题考查了经济问题,数量×单价=总价,所以数量=总价÷单价。
30.36枚
【解析】
设红红收集了x枚邮票,根据红红收集的邮票数量×3-12=冬冬收集的邮票数量,列出方程解答即可。
解:设红红收集了x枚邮票。
3x-12=96
3x-12+12=96+12
3x÷3=108÷3
x=36
答:红红收集了36枚邮票。
【点睛】
用方程解决问题的关键是找到等量关系。
31.男生36人;女生12人
【解析】
把女生人数设为未知数,男生人数=女生人数×3,等量关系式:男生人数+女生人数=学员总人数,据此解答。
解:设围棋社女生有x人,则男生有3x人。
3x+x=48
4x
解析:男生36人;女生12人
【解析】
把女生人数设为未知数,男生人数=女生人数×3,等量关系式:男生人数+女生人数=学员总人数,据此解答。
解:设围棋社女生有x人,则男生有3x人。
3x+x=48
4x=48
x=48÷4
x=12
男生:12×3=36(人)
答:围棋社的男生有36人,女生有12人。
【点睛】
根据男生人数与女生人数的数量关系设出未知数是解答题目的关键。
32.够
【解析】
先把教室的长、宽估成最接近的整数,往大了估,然后根据长方形的面积=长×宽,计算出教室的面积;根据正方形的面积=边长×边长,计算出一块正方形地砖的面积,再乘100,即是100块地砖的面积
解析:够
【解析】
先把教室的长、宽估成最接近的整数,往大了估,然后根据长方形的面积=长×宽,计算出教室的面积;根据正方形的面积=边长×边长,计算出一块正方形地砖的面积,再乘100,即是100块地砖的面积,与估大的教室面积相比较,如果面积估大的教室都够铺,那么原来的教室面积就一定够铺,进而得出结论。注意单位的换算:1米=10分米。
8.8≈9
5.9≈6
9×6=54(平方米)
8分米=0.8米
0.8×0.8×100
=0.64×100
=64(平方米)
54<64,够。
答:100块够。
【点睛】
掌握用估算解决小数乘法应用题的方法是解题的关键。
33.3225块
【解析】
这面墙的面积等于一个长5米、宽4米的长方形的面积,加上一个底是5米、高是1.8米的三角形的面积,再减去一个长2米、宽1.5米的长方形窗户的面积;
根据长方形的面积=长×宽,三角
解析:3225块
【解析】
这面墙的面积等于一个长5米、宽4米的长方形的面积,加上一个底是5米、高是1.8米的三角形的面积,再减去一个长2米、宽1.5米的长方形窗户的面积;
根据长方形的面积=长×宽,三角形的面积=底×高÷2,代入数据计算求出这面墙的面积,再乘每平方米用的砖的块数,就是砌这面墙一共用砖的块数。
5×4=20(平方米)
5×1.8÷2
=9÷2
=4.5(平方米)
2×1.5=3(米)
20+4.5-3
=24.5-3
=21.5(平方米)
150×21.5=3225(块)
答:一共用砖3225块。
【点睛】
掌握长方形、三角形的面积计算公式是解题的关键。
34.600平方米
【解析】
由图形可知:梯形上下底的和是(70-30)米,根据梯形的面积公式:S=(a+b)×h÷2,把数据代入公式解答。
(70-30)×30÷2
=40×30÷2
=600(平方米)
解析:600平方米
【解析】
由图形可知:梯形上下底的和是(70-30)米,根据梯形的面积公式:S=(a+b)×h÷2,把数据代入公式解答。
(70-30)×30÷2
=40×30÷2
=600(平方米)
答:这个花圃的面积是600平方米。
【点睛】
此题主要考查梯形面积公式在实际生活中的应用。
35.96吨
【解析】
根据三角形的面积公式:S=ah÷2,求出这块麦田的面积是多少平方米,再换算成公顷,然后根据单产量×数量=总产量,据此列式解答。
800×400÷2
=320000÷2
=16000
解析:96吨
【解析】
根据三角形的面积公式:S=ah÷2,求出这块麦田的面积是多少平方米,再换算成公顷,然后根据单产量×数量=总产量,据此列式解答。
800×400÷2
=320000÷2
=160000(平方米)
=16(公顷)
16×6000=96000(千克)=96(吨)
答:这块地能收小麦96吨。
【点睛】
此题主要考查三角形的面积公式在实际生活中的应用,注意面积单位之间的换算。
36.260m2
【解析】
围花坛的篱笆长=上底+下底+20m,据此求出梯形上下底之和,再利用梯形的面积公式解答即可。
(m2)
答:这个花坛的面积是260m2。
【点睛】
本题考查梯形的周长和面积,
解析:260m2
【解析】
围花坛的篱笆长=上底+下底+20m,据此求出梯形上下底之和,再利用梯形的面积公式解答即可。
(m2)
答:这个花坛的面积是260m2。
【点睛】
本题考查梯形的周长和面积,解答本题的关键是掌握梯形的周长和面积计算公式。
37.①200平方米
②够
【解析】
①增加的面积=长方形面积-梯形面积,长方形面积=长×宽,梯形面积=(上底+下底)×高÷2。
②增加的面积×每平方米价格,求出实际费用,与预算比较即可。
①50×20-
解析:①200平方米
②够
【解析】
①增加的面积=长方形面积-梯形面积,长方形面积=长×宽,梯形面积=(上底+下底)×高÷2。
②增加的面积×每平方米价格,求出实际费用,与预算比较即可。
①50×20-(50+30)×20÷2
=1000-80×10
=1000-800
=200(m2)
答:面积比原来增加了200平方米。
②200×7.8=1560(元)
1560<1600
答:预算的钱够。
【点睛】
关键是掌握并灵活运用梯形面积公式。
38.18平方厘米
【解析】
解析:18平方厘米
【解析】
39.5分米
【解析】
根据题意,用一根铁丝围成一个等腰梯形,那么铁丝的长度就是梯形的周长;等腰梯形的两条腰长度相等,先用一条腰的长度乘2,求出两条腰的长度,再用铁丝的长度减去两条腰的长度,即可求出上底与
解析:5分米
【解析】
根据题意,用一根铁丝围成一个等腰梯形,那么铁丝的长度就是梯形的周长;等腰梯形的两条腰长度相等,先用一条腰的长度乘2,求出两条腰的长度,再用铁丝的长度减去两条腰的长度,即可求出上底与下底之和;根据梯形的面积=(上底+下底)×高÷2可知,梯形的高=面积×2÷(上底+下底),代入数据计算即可。
梯形的上底与下底之和:
15.6-4.1×2
=15.6-8.2
=7.4(分米)
梯形的高:
12.95×2÷7.4
=25.9÷7.4
=3.5(分米)
答:这个梯形的高是3.5分米。
【点睛】
明确铁丝的长度等于梯形的周长,掌握等腰梯形的特征,以及灵活运用梯形的面积公式是解题的关键。
40.8米
【解析】
根据梯形的面积=(上底+下底)×高÷2可列式:上底+下底=2.52×2÷1.2,然后已知两底的和,又知道两底有倍数关系,根据和倍公式:两数之和÷(倍数+1)即可求出渠底,再乘2即可解
解析:8米
【解析】
根据梯形的面积=(上底+下底)×高÷2可列式:上底+下底=2.52×2÷1.2,然后已知两底的和,又知道两底有倍数关系,根据和倍公式:两数之和÷(倍数+1)即可求出渠底,再乘2即可解答。
2.52×2÷1.2÷(2+1)
=5.04÷1.2÷3
=4.2÷3
=1.4(米)
渠口:1.4×2=2.8(米)
答:渠口宽2.8米。
展开阅读全文