1、人教版七年级下册数学期中模拟试卷及答案完整(2)一、选择题1下列各式中,没有平方根的是()A-22B(-2)2C-(-2)D-22下列各组图形可以通过平移互相得到的是()ABCD3在平面直角坐标系中,点(1,m2+1)一定在()A第一象限B第二象限C第三象限D第四象限4下列五个命题:如果两个数的绝对值相等,那么这两个数的平方相等;一个三角形被截成两个三角形,每个三角形的内角和是90度;在同一平面内,垂直于同一条直线的两条直线互相平行;两个无理数的和一定是无理数;坐标平面内的点与有序数对是一一对应的其中真命题的个数是( )A2个B3个C4个D5个5将两张长方形纸片按如图所示方式摆放,使其中一张长
2、方形纸片的两个顶点恰好落在另一张长方形纸片的两条边上,则1+2的度数为( )A120B110C100D906下列说法正确的是()A9的立方根是3B算术平方根等于它本身的数一定是1C2是4的一个平方根D的算术平方根是27如图所示,小明课间把老师的三角板的直角顶点放在黑板的两条平行线a,b上,已知2=35,则1的度数为( )A45B125C55D358如图,在平面直角坐标系xOy中,一只蚂蚁从原点O出发向右移动1个单位长度到达点P1;然后逆时针转向90移动2个单位长度到达点P2;然后逆时针转向90,移动3个单位长度到达点P3;然后逆时针转向90,移动4个单位长度到达点P4;,如此继续转向移动下去设
3、点Pn(xn,yn),n1,2,3,则x1+x2+x3+x2021()A1B1010C1011D2021二、填空题9若,则=_10点A(2,1)关于x轴对称的点的坐标是_11如图,在中,作的角平分线与的外角的角平分线交于点;的角平分线与角平分线交于,如此下去,则_12如图,则的度数为_13如图,在四边形ABCD纸片中,ADBC,ABCD将纸片折叠,点A、B分别落在G、H处,EF为折痕,FH交CD于点K若CKF35,则A+GED_14若,且a,b是两个连续的整数,则a+b的值为_15在平面直角坐标系中,第二象限内的点到横轴的距离为,到纵轴的距离为,则点的坐标是_16在平面直角坐标系中,若干个边长
4、为1个单位长度的等边三角形,按如图中的规律摆放点P从原点O出发,以每秒1个单位长度的速度沿着等边三角形的边“OA1A1A2A2A3A3A4A4A5”的路线运动,设第n秒运动到点Pn(n为正整数),则点P2020的坐标是_三、解答题17计算:(1) (2)(3) (4)18求下列各式中的值:(1);(2)19根据下列证明过程填空:已知:如图,于点,于点,求证:证明:,(已知)(_)(_)(_)又(已知)(_)(_)(_)20如图,一只甲虫在55的方格(每小格边长为1)上沿着网格线运动它从A处出发去看望B、C、D处的其它甲虫,规定:向上向右走为正,向下向左走为负如果从A到B记为:AB(1,4),从
5、B到A记为:AB(1,4),其中第一个数表示左右方向,第二个数表示上下方向,那么图中(1)AC( , ),BD( , ),C (1, );(2)若这只甲虫从A处去甲虫P处的行走路线依次为(2,2),(1,1),(2,3),(1,2),请在图中标出P的位置21如图,将由5个边长为1的小正方形拼成的图形沿虚线剪开,将剪开后的图形拼成如图所示的大正方形,设图所示的大正方形的边长为a(1)求a的值;(2)若a的整数部分为m,小数部分为n,试求式子的值22(1)若一圆的面积与这个正方形的面积都是,设圆的周长为,正方形的周长为,则_(填“=”或“”号)(2)如图,若正方形的面积为,李明同学想沿这块正方形边
6、的方向裁出一块面积为的长方形纸片,使它的长和宽之比为3:2,他能裁出吗?请说明理由23如图,直线AB直线CD,线段EFCD,连接BF、CF(1)求证:ABF+DCFBFC;(2)连接BE、CE、BC,若BE平分ABC,BECE,求证:CE平分BCD;(3)在(2)的条件下,G为EF上一点,连接BG,若BFCBCF,FBG2ECF,CBG70,求FBE的度数24如图所示,在三角形纸片中,将纸片的一角折叠,使点落在内的点处.(1)若,_.(2)如图,若各个角度不确定,试猜想,之间的数量关系,直接写出结论.当点落在四边形外部时(如图),(1)中的猜想是否仍然成立?若成立,请说明理由,若不成立,之间又
7、存在什么关系?请说明(3)应用:如图:把一个三角形的三个角向内折叠之后,且三个顶点不重合,那么图中的和是_.【参考答案】一、选择题1A解析:A【分析】把各数进行化简,再根据平方根的性质即可进行求解【详解】解:A、-22=-4,是负数,负数没有平方根,故该选项符合题意;B、(-2)2=4,是正数,正数有平方根,故该选项不符合题意;C、-(-2)=2,是正数,正数有平方根,故该选项不符合题意;D、-2=2,是正数,正数有平方根,故该选项不符合题意;故选:A【点睛】本题主要考查了平方根,熟练掌握平方根的性质是解本题的关键2C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线
8、上)且相等,从而得出答案【详解】解:观察图形可知图案C通过平移后可以得到故选:C【点睛】本题考查的是解析:C【分析】根据平移不改变图形的形状和大小,平移变换中对应线段平行(或在同一直线上)且相等,从而得出答案【详解】解:观察图形可知图案C通过平移后可以得到故选:C【点睛】本题考查的是平移变换及其基本性质,掌握以上知识是解题的关键3B【分析】应先判断出点的横纵坐标的符号,进而判断点所在的象限【详解】解:因为点(1,m2+1),横坐标10,纵坐标m2+1一定大于0,所以满足点在第二象限的条件故选:B【点睛】本题主要考查平面直角坐标系里象限的坐标,熟练掌握每个象限的坐标符号特点是解题的关键4B【分析
9、】依次根据平方的概念、三角形内角和定义、平行线的判定、无理数性质、实数的性质判断即可【详解】解:如果两个数的绝对值相等,那么这两个数的平方相等,是真命题;一个三角形被截成两个三角形,每个三角形的内角和是180度,原命题是假命题;在同一平面内,垂直于同一条直线的两条直线互相平行,是真命题;两个无理数的和不一定是无理数,是假命题;坐标平面内的点与有序数对是一一对应的,是真命题;其中真命题是,个数是3故选:【点睛】本题考查平方的概念、三角形内角和定义、平行线的判定、无理数性质、实数的性质,牢记概念和性质,能够灵活理解概念性质是解题的关键5D【分析】过E作EFCD,根据平行线的性质可得1=BEF,2=
10、DEF, 再由BED=90即可解答【详解】解:过E作EFCD,ABCD,EFCDAB,1=BEF,2=DEF,BEF+DEF=BED=90,1+2=90,故选:D【点睛】本题考查平行线的判定与性质,熟练掌握平行线的性质是解答的关键6C【解析】【分析】利用立方根、平方根和算术平方根的定义进行判断即可.【详解】解:9的立方根是,故A项错误;算术平方根等于它本身的数是1和0,故B项错误;2是4的一个平方根,故C项正确;的算术平方根是,故D项错误;故选C.【点睛】本题考查了平方根、算术平方根和立方根,熟练掌握各自的定义是解题的关键.7C【分析】根据ACB=90,2=35求出3的度数,根据平行线的性质得
11、出1=3,代入即可得出答案【详解】解:ACB=90,2=35,3=180-90-35=55,ab,1=3=55故选:C【点睛】本题考查了平行线的性质和邻补角的定义,解此题的关键是求出3的度数和得出1=3,题目比较典型,难度适中8A【分析】根据各点横坐标数据得出规律,进而得出;经过观察分析可得每4个数的和为,把2020个数分为505组,求出,即可得到相应结果【详解】解:根据平面坐标系结合各点横坐标得出:、解析:A【分析】根据各点横坐标数据得出规律,进而得出;经过观察分析可得每4个数的和为,把2020个数分为505组,求出,即可得到相应结果【详解】解:根据平面坐标系结合各点横坐标得出:、的值分别为
12、:1,1,3,3,;,故选:A【点睛】此题主要考查了点的坐标特点,解决本题的关键是分析得到4个数相加的规律二、填空题91.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可【详解】解:,故答案为1.01【点睛】本题考查了算术平方根的移解析:1.01【分析】根据算术平方根的意义,把被开方数的小数点进行移动(每移动两位,结果移动一位),进行填空即可【详解】解:,故答案为1.01【点睛】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键10(2,1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答【详解】解:点
13、(-2,1)关于x轴对称的点的坐标是(-2,-1),故答案为:(-2,-1)【点睛】本解析:(2,1)【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答【详解】解:点(-2,1)关于x轴对称的点的坐标是(-2,-1),故答案为:(-2,-1)【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数11【分析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与,与的关系,找出规律即
14、可【详解】解:设BC延长与点D,的角平分线与的外角的角平分线交于点,同解析:【分析】根据角平分线的定义以及三角形外角的性质,三角形内角和定理得出与,与的关系,找出规律即可【详解】解:设BC延长与点D,的角平分线与的外角的角平分线交于点,同理可得,故答案为:【点睛】本题主要考查三角形外角的性质,角平分线的定义,三角形内角和等知识点,熟知以上知识点,找出角度之间的规律是解题的关键1230【分析】过点C作CFAB,根据平行线的传递性得到CFDE,根据平行线的性质得到BCF=ABC,CDE+DCF=180,根据已知条件等量代换得到BCF=70,由等式性质得到解析:30【分析】过点C作CFAB,根据平行
15、线的传递性得到CFDE,根据平行线的性质得到BCF=ABC,CDE+DCF=180,根据已知条件等量代换得到BCF=70,由等式性质得到DCF=30,于是得到结论【详解】解:过点C作CFAB,ABDE,CFDE,BCF=ABC=70,DCF=180-CDE=40,BCD=BCF-DCF=70-40=30故答案为:30【点睛】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即同位角相等两直线平行,内错角相等两直线平行,同旁内角互补两直线平行13145【分析】首先判定四边形ABCD是平行四边形,得到AC,ADBC,再根据折叠变换的性质和平行线的性质将角度转化求解【详解】解:ADBC,
16、ABCD,四边形ABCD是平行解析:145【分析】首先判定四边形ABCD是平行四边形,得到AC,ADBC,再根据折叠变换的性质和平行线的性质将角度转化求解【详解】解:ADBC,ABCD,四边形ABCD是平行四边形,AC,根据翻转折叠的性质可知,AEFGEF,EFBEFK,ADBC,DEFEFB,AEFEFC,GEFAEFEFC,DEFEFBEFK,GEFDEFEFCEFK,GEDCFK,C+CFK+CKF180,C+CFK145,A+GED145,故答案为145【点睛】本题主要考查平行线的性质;多边形内角与外角及翻折变换(折叠问题),熟练掌握平行线的性质;多边形内角与外角及翻折变换(折叠问题)
17、是解题的关键1413【解析】分析:先估算出的范围,求出a、b的值,再代入求出即可详解:67,a=6,b=7,a+b=13故答案为13点睛:本题考查了估算无理数的大小,能估算出的范围是解答此解析:13【解析】分析:先估算出的范围,求出a、b的值,再代入求出即可详解:67,a=6,b=7,a+b=13故答案为13点睛:本题考查了估算无理数的大小,能估算出的范围是解答此题的关键15(3,2)【分析】根据点到x轴的距离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案【详解】点到横轴的距离为,到纵轴的距离为,解析:(3,2)【分析】根据点到x轴的距
18、离是纵坐标的绝对值,点到y轴的距离是点的横坐标的绝对值,第二象限内点的横坐标小于零,纵坐标大于零,可得答案【详解】点到横轴的距离为,到纵轴的距离为,|y|=2,|x|=3,由M是第二象限的点,得:x=3,y=2即点M的坐标是(3,2),故答案为:(3,2)【点睛】此题考查象限及点的坐标的有关性质,解题关键在于第二象限内点的横坐标小于零,纵坐标大于零16【分析】先分别求出点的坐标,再归纳类推出一般规律,由此即可得出答案【详解】解:由题意得:点的坐标是,点的坐标是,点的坐标是,点的坐标是,归纳类推得:点的坐标是,其中为正整数,因为解析:【分析】先分别求出点的坐标,再归纳类推出一般规律,由此即可得出
19、答案【详解】解:由题意得:点的坐标是,点的坐标是,点的坐标是,点的坐标是,归纳类推得:点的坐标是,其中为正整数,因为,所以点的坐标是,故答案为:【点睛】本题考查了点坐标规律探索,正确归纳类推出一般规律是解题关键三、解答题17(1)6;(2)-4;(3);(4).【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(2)利用算术平方根和立方根化简,再进一步计算即可;(3)类比单项式乘多项式展开计算解析:(1)6;(2)-4;(3);(4).【分析】(1)利用算术平方根和立方根、绝对值化简,再进一步计算即可;(2)利用算术平方根和立方根化简,再进一步计算即可;(3)类比单项式乘多项
20、式展开计算;(4)利用绝对值的性质化简,再进一步合并同类二次根式【详解】解:(1)=3+2+1=6;(2)=2-3-3=-4;(3)= ;(4)= =故答案为(1)6;(2)-4;(3);(4).【点睛】本题考查立方根和算术平方根,实数的混合运算,先化简,再进一步计算,注意选择合适的方法简算18(1)或;(2)【分析】(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可【详解】解:(1),或;(2),【点睛】本题主解析:(1)或;(2)【分析】(1)直接根据求平方根的方法解方程即可;(2)直接根据求立方根的方法解方程即可【详解】解:(1),或;(2),【点睛】本题主要
21、考查了利用求平方根和求立方根的方法解方程,解题的关键在于能够熟练掌握相关知识进行求解19;垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;GD;同位角相等,两直线平行;两直线平行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可【详解】解析:;垂直的定义;同位角相等,两直线平行;两直线平行,同位角相等;GD;同位角相等,两直线平行;两直线平行,内错角相等;等量代换【分析】结合图形,根据已知证明过程,写出相关的依据即可【详解】证明:证明:,(已知)(垂直的定义)(同位角相等,两直线平行)(两直线平行,同位角相等)又(已知)(同位角相等,两直线平行)(两直线平
22、行,内错角相等)(等量代换)【点睛】本题考查证明过程中每一步的依据,根据推理过程明白相关知识点是解题关键20(1)3,4,3,2,D,2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案【详解】解:(1)AC( 3解析:(1)3,4,3,2,D,2;(2)见解析【分析】(1)根据向上向右走为正,向下向左走为负,可得答案;(2)根据向上向右走为正,向下向左走为负,可得答案【详解】解:(1)AC( 3,4),BD(32),CD(1,2);故答案为3,4;3,2;D,2;(2)这只甲虫从A处去甲虫P处的行走路线依次为(2,2)
23、,(1,1),(2,3),(1,2),请在图中标出P的位置,如图【点睛】本题主要考查了用有序实数对表示路线读懂题目信息,正确理解行走路线的记录方法是解题的关键21(1);(2)1【分析】(1)分析图形得到大正方形的面积,从而得到边长a;(2)估算出a的范围,得到整数部分和小数部分,代入计算即可【详解】解:(1)由题意可得:,a0,;解析:(1);(2)1【分析】(1)分析图形得到大正方形的面积,从而得到边长a;(2)估算出a的范围,得到整数部分和小数部分,代入计算即可【详解】解:(1)由题意可得:,a0,;(2),m=2,n=,=1【点睛】本题考查了算术平方根的应用,无理数的估算,解题的关键是
24、能估算出的范围22(1);(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为,宽为,由题意得关于解析:(1);(2)不能,理由见解析【分析】(1)分别根据圆的面积和正方形的面积得出其半径或边长,再分别求得其周长,根据实数大小比较的方法,可得答案;(2)设裁出的长方形的长为,宽为,由题意得关于的方程,解得的值,从而可得长方形的长和宽,将其与正方形的边长比较,可得答案【详解】解:(1)圆的面积与正方形的面积都是,圆的半径为,正方形的边长为,(2)不能裁出长和宽之比为的长方形,理由如下:设
25、裁出的长方形的长为,宽为,由题意得:,解得或(不合题意,舍去),长为,宽为,正方形的面积为,正方形的边长为,不能裁出长和宽之比为的长方形【点睛】本题考查了算术平方根在正方形和圆的面积及周长计算中的简单应用,熟练掌握相关计算公式是解题的关键23(1)证明见解析;(2)证明见解析;(3)FBE35【分析】(1)根据平行线的性质得出ABFBFE,DCFEFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;解析:(1)证明见解析;(2)证明见解析;(3)FBE35【分析】(1)根据平行线的性质得出ABFBFE,DCFEFC,进而解答即可;(2)由(1)的结论和垂直的定义解答即可;(3)由(1
26、)的结论和三角形的角的关系解答即可【详解】证明:(1)ABCD,EFCD,ABEF,ABFBFE,EFCD,DCFEFC,BFCBFE+EFCABF+DCF;(2)BEEC,BEC90,EBC+BCE90,由(1)可得:BFCABE+ECD90,ABE+ECDEBC+BCE,BE平分ABC,ABEEBC,ECDBCE,CE平分BCD;(3)设BCE,ECF,CE平分BCD,DCEBCE,DCFDCEECF,EFC,BFCBCF,BFCBCE+ECF+,ABFBFE2,FBG2ECF,FBG2,ABE+DCEBEC90,ABE90,GBEABEABFFBG9022,BE平分ABC,CBEABE9
27、0,CBGCBE+GBE,7090+9022,整理得:2+55,FBEFBG+GBE2+902290(2+)35【点睛】本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答24(1)50;(2)见解析;见解析;(3)360.【分析】(1)根据题意,已知,可结合三角形内角和定理和折叠变换的性质求解;(2)先根据折叠得:ADE=ADE,AED=A解析:(1)50;(2)见解析;见解析;(3)360.【分析】(1)根据题意,已知,可结合三角形内角和定理和折叠变换的性质求解;(2)先根据折叠得:ADE=ADE,AED=AED,由两个平角AEB和ADC得:1+2等于360与四个折叠角的差,化简
28、得结果;利用两次外角定理得出结论;(3)由折叠可知1+2+3+4+5+6等于六边形的内角和减去(BGF+BFG)以及(CDE+CED)和(AHL+ALH),再利用三角形的内角和定理即可求解【详解】解:(1),A=A=180-(65+70)=45,AED+ADE =180-A=135,2=360-(C+B+1+AED+ADE)=360-310=50;(2),理由如下由折叠得:ADE=ADE,AED=AED,AEB+ADC=360,1+2=360-ADE-ADE-AED-AED=360-2ADE-2AED,1+2=2(180-ADE-AED)=2A;,理由如下:是的一个外角.是的一个外角又(3)如图由题意知,1+2+3+4+5+6=720-(BGF+BFG)-(CDE+CED)-(AHL+ALH)=720-(180-B)-(180-C)-(180-A)=180+(B+C+A)又B=B,C=C,A=A,A+B+C=180,1+2+3+4+5+6=360【点睛】题主要考查了折叠变换、三角形、四边形内角和定理注意折叠前后图形全等;三角形内角和为180;四边形内角和等于360度