资源描述
人教版七年级下册数学期中模拟试卷及答案人教(2)
一、选择题
1.的平方根是()
A.9 B.9和﹣9 C.3 D.3和﹣3
2.北京2022年冬奥会会徽是以汉字“冬”为灵感来源设计的.在下面如图的四个图中,能由如图经过平移得到的是( )
A. B. C. D.
3.下列各点在第二象限的是( )
A. B. C. D.
4.下列四个命题:①是64的立方根;②5是25的算术平方根;③如果两条直线都与第三条直线平行,那么这两条直线也互相平行;④在平面直角坐标系中,与两坐标轴距离都是2的点有且只有2个.其中真命题有( )个
A.1 B.2 C.3 D.4
5.将一张边沿互相平行的纸条如图折叠后,若边,则翻折角与一定满足的关系是( )
A. B. C. D.
6.下列说法中:①立方根等于本身的是,0,1;②平方根等于本身的数是0,1;③两个无理数的和一定是无理数;④实数与数轴上的点是一一对应的;⑤是负分数;⑥两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数.其中正确的个数是( )
A.3 B.4 C.5 D.6
7.如图,已知,点在上,连接,作平分交于点,,则的度数为( ).
A. B.
C. D.
8.如图,在平面直角坐标系内原点O(0,0)第一次跳动到点A1(0,1),第二次从点A1跳动到点A2(1,2),第三次从点A2跳动到点A3(-1,3),第四次从点A3跳动到点A4(-1,4),……,按此规律下去,则点A2021的坐标是( ).
A.(673,2021) B.(674,2021) C.(-673,2021) D.(-674,2021)
二、填空题
9.已知,则x+y=___________
10.在平面直角坐标系中,点P(-3,2)关于x轴对称的点P1的坐标是______________.
11.如图,在△ABC中,CD是它的角平分线,DE⊥AC于点 E.若BC=6cm,DE=2cm,则△BCD的面积为_____cm2
12.如图,,平分,交于,若,则的度数是______°.
13.如图,把一张长方形纸片沿折叠后,、分别落在,的位置上,与交于点,若,则______.
14.已知,若且是整数,则m=______ .
15.在平面直角坐标系中,若点在第二象限,则的取值范围为_______.
16.如图,在平面直角坐标系中,有若干个整数点(纵横坐标都是整数的点),其顺序按图中“→”方向排列如(1,1),(2,1),(2,2),(1,2),(1,3),(2,3)…根据这个规律探索可得,第2021个点的坐标为_____.
三、解答题
17.计算下列各式的值:
(1)
(2)
18.求下列各式中的值
(1)
(2)
19.如图,已知:,.
求证:.
证明:∵(已知),
∴∠______=∠______(______).
∵(______),
∴∠______(等量代换).
∴(______).
20.三角形ABC在平面直角坐标系中的位置如图所示,点为坐标原点,,,.
(1)将向右平移4个单位长度得到,画出平移后的;
(2)将向下平移5个单位长度得到,画出平移后的;
(3)直接写出三角形的面积为______平方单位.(直接写出结果)
21.阅读下面的文字,解答问题:
大家知道,是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,于是小明用来表示的小数部分,你同意小明的表示方法吗?
事实上,小明的表示方法是有道理的,因为的整数部分是1,将这个数减去其整数部分,差是小数部分.
又例如,因为,即,所以的整数部分为2,小数部分为.请解答:
(1)的整数部分为 ;小数部分为 ;
(2)如果的整数部分为a,的小数部分为b,求的值.
22.如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.
(1)拼成的正方形的面积与边长分别是多少?
(2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是多少?点A表示的数的相反数是多少?
(3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并求它的边长
23.如图,直线HDGE,点A在直线HD上,点C在直线GE上,点B在直线HD、GE之间,∠DAB=120°.
(1)如图1,若∠BCG=40°,求∠ABC的度数;
(2)如图2,AF平分∠HAB,BC平分∠FCG,∠BCG=20°,比较∠B,∠F的大小;
(3)如图3,点P是线段AB上一点,PN平分∠APC,CN平分∠PCE,探究∠HAP和∠N的数量关系,并说明理由.
24.如图1,已知AB∥CD,BE平分∠ABD,DE平分∠BDC.
(1)求证:∠BED=90°;
(2)如图2,延长BE交CD于点H,点F为线段EH上一动点,∠EDF=α,∠ABF的角平分线与∠CDF的角平分线DG交于点G,试用含α的式子表示∠BGD的大小;
(3)如图3,延长BE交CD于点H,点F为线段EH上一动点,∠EBM的角平分线与∠FDN的角平分线交于点G,探究∠BGD与∠BFD之间的数量关系,请直接写出结论: .
【参考答案】
一、选择题
1.D
解析:D
【分析】
先化简,再根据平方根的地红衣求解.
【详解】
解:∵=9,
∴的平方根是,
故选D.
【点睛】
本题考查了平方根的定义,熟练掌握平方根的定义是解答本题的关键,如果一个数的平方等于a,则这个数叫做a的平方根,即x2=a,那么x叫做a的平方根,记作.
2.C
【分析】
根据平移只改变图形的位置,不改变图形的形状与大小解答.
【详解】
解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知,
A.是旋转180°后图形,故选项A不合题意;
B.是
解析:C
【分析】
根据平移只改变图形的位置,不改变图形的形状与大小解答.
【详解】
解:观察各选项图形只改变图形的位置,不改变图形的形状与大小可知,
A.是旋转180°后图形,故选项A不合题意;
B.是轴对称图形,故选项B不合题意;
C.选项的图案可以通过平移得到.故选项C符合题意;
D.是轴对称图形,故选项D不符合题意.
故选:C.
【点睛】
本题考查了图形的平移,掌握平移的定义及性质是解题的关键.
3.C
【分析】
根据各象限内点的坐标特征对各选项分析判断即可得解.
【详解】
解:A.在第一象限,故本选项不合题意;
B.在第四象限,故本选项不合题意;
C.在第二象限,故本选项符合题意.
D.在第三象限,故本选项不合题意;
故选:C.
【点睛】
本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).
4.B
【分析】
根据立方根和算术平方根的定义、平行线的性质、点到直线的距离逐项判断即可.
【详解】
64的立方根是4,故①是假命题; 25的算数平方根是5,故②是真命题;如果两条直线都与第三条直线平行,那么这两条直线也互相平行,故③是真命题;与两坐标轴距离都是2的点有(2,2)、(2,-2)、(-2,2)、(-2,-2)共4点,故④是假命题.
故选:B.
【点睛】
本题考查命题真、假的判断.正确掌握相关定义、性质与判定是解题关键.
5.B
【分析】
根据平行可得出∠DAB+∠CBA=180°,再根据折叠和平角定义可求出.
【详解】
解:由翻折可知,∠DAE=2,∠CBF=2,
∵,
∴∠DAB+∠CBA=180°,
∴∠DAE+∠CBF=180°,
即,
∴,
故选:B.
【点睛】
本题考查了平行线的性质和角平分线的性质,解题关键是熟练运用平行线的性质进行推理计算.
6.A
【分析】
根据平方根和立方根的性质,以及无理数的性质判断选项的正确性.
【详解】
解:立方根等于本身的数有:,1,0,故①正确;
平方根等于本身的数有:0,故②错误;
两个无理数的和不一定是无理数,比如和的和是0,是有理数,故③错误;
实数与数轴上的点一一对应,故④正确;
是无理数,不是分数,故⑤错误;
从数轴上来看,两个有理数之间有无数个无理数,同样两个无理数之间有无数个有理数,故⑥正确.
故选:A.
【点睛】
本题考查平方根和立方根的性质,无理数的性质,解题的关键是熟练掌握这些概念.
7.A
【分析】
由平行线的性质可得,再由角平分线性质可得,利用邻补角可求的度数.
【详解】
解:,,
,
平分交于点,
,
.
故选:A.
【点睛】
本题主要考查平行线的性质及角平分线的定义,解答的关键是熟记并灵活运用平行线的性质.
8.B
【分析】
根据已知点的坐标寻找规律并应用解答即可.
【详解】
解:∵A1(0,1),A2(1,2),A3(-1,3),A4(-1,4),
∴A5(2,5),A6(-2,6),A7(-2,7),A
解析:B
【分析】
根据已知点的坐标寻找规律并应用解答即可.
【详解】
解:∵A1(0,1),A2(1,2),A3(-1,3),A4(-1,4),
∴A5(2,5),A6(-2,6),A7(-2,7),A8(3,8),
∴A3n-1(n,3n-1),A3n(-n,3n),A3n+1(-n,3n+1)(n为正整数),
∵3×674-1=2021,
∴n=674,所以A 2021(674,2021).
故选B.
【点睛】
本题主要考查了点的坐标规律,根据已知点坐标找到A3n-1(n,3n-1),A3n(-n,3n),A3n+1(-n,3n+1)(n为正整数)的规律是解答本题的关键.
二、填空题
9.-1
【解析】
【分析】
根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.
【详解】
解:由题意得,x-2=0,x2-3y-13=0,
解得x=2,y=-3,
所以,x+y=2+
解析:-1
【解析】
【分析】
根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.
【详解】
解:由题意得,x-2=0,x2-3y-13=0,
解得x=2,y=-3,
所以,x+y=2+(-3)=-1.
故答案为:-1.
【点睛】
本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0.
10.(-3,-2)
【分析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.
【详解】
点P(﹣3,2)关于x轴对称的点Q的坐标是(﹣3,﹣2).
故答案为:(﹣3,﹣2).
【点
解析:(-3,-2)
【分析】
根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数可得答案.
【详解】
点P(﹣3,2)关于x轴对称的点Q的坐标是(﹣3,﹣2).
故答案为:(﹣3,﹣2).
【点睛】
本题考查了关于x轴对称点的坐标,关键是掌握点的坐标的变化规律.
11.6
【分析】
根据角平分线的性质计算即可;
【详解】
作,
∵CD是角平分线,DE⊥AC,
∴,
又∵BC=6cm,
∴;
故答案是6.
【点睛】
本题主要考查了角平分线的性质,准确计算是解题的关
解析:6
【分析】
根据角平分线的性质计算即可;
【详解】
作,
∵CD是角平分线,DE⊥AC,
∴,
又∵BC=6cm,
∴;
故答案是6.
【点睛】
本题主要考查了角平分线的性质,准确计算是解题的关键.
12.25
【分析】
根据平行线的性质和角平分线的定义求解即可得到答案.
【详解】
解:∵AB∥CD,
∴∠1=∠ECD,
∵CE平分∠ACD,∠ACD=50°,
∴=25°,
∴∠1=25°,
故答案为
解析:25
【分析】
根据平行线的性质和角平分线的定义求解即可得到答案.
【详解】
解:∵AB∥CD,
∴∠1=∠ECD,
∵CE平分∠ACD,∠ACD=50°,
∴=25°,
∴∠1=25°,
故答案为:25.
【点睛】
本题主要考查了角平分线的定义,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.
13.68°
【分析】
先根据平行线的性质求得∠DEF的度数,再根据折叠求得∠DEG的度数,最后计算∠AEG的大小.
【详解】
解:∵AD//BC,,
∴∠DEF=∠EFG=56°,
由折叠可得,∠GEF
解析:68°
【分析】
先根据平行线的性质求得∠DEF的度数,再根据折叠求得∠DEG的度数,最后计算∠AEG的大小.
【详解】
解:∵AD//BC,,
∴∠DEF=∠EFG=56°,
由折叠可得,∠GEF=∠DEF=56°,
∴∠DEG=112°,
∴∠AEG=180°-112°=68°.
故答案为:68°.
【点睛】
本题考查了折叠问题,平行线的性质,解题时注意:长方形的对边平行,且折叠时对应角相等.
14.2
【分析】
根据题意可知m是整数,然后求出m的范围即可得出m的具体数值,然后根据是整数即可求出答案.
【详解】
解:∵是整数,
∴m是整数,
∵,
∴m2≤4,
∴−2≤m≤2,
∴m=−2,−1
解析:2
【分析】
根据题意可知m是整数,然后求出m的范围即可得出m的具体数值,然后根据是整数即可求出答案.
【详解】
解:∵是整数,
∴m是整数,
∵,
∴m2≤4,
∴−2≤m≤2,
∴m=−2,−1,0,1,2
当m=±2或−1时,是整数,
∵
∴m=2
故答案为:2.
【点睛】
本题考查算术平方根和无理数大小的估算,解题的关键是根据条件求出m的范围,本题属于中等题型.
15.-1<a<3
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.
【详解】
解:∵点P(a-3,a+1)在第二象限,
∴,
解不等式①得,a<3,
解不等式②得,a>
解析:-1<a<3
【分析】
根据第二象限内点的横坐标是负数,纵坐标是正数列出不等式组,然后求解即可.
【详解】
解:∵点P(a-3,a+1)在第二象限,
∴,
解不等式①得,a<3,
解不等式②得,a>-1,
∴-1<a<3.
故答案为:-1<a<3.
【点睛】
本题考查了各象限内点的坐标的符号特征以及解不等式组,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).
16.(45,5)
【分析】
观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐
解析:(45,5)
【分析】
观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于正方形直线上,最右边的点的横坐标的平方,并且点的横坐标是奇数时,最后以横坐标为该数,纵坐标为1结束,当右下角的点横坐标是偶数时,以偶数为横坐标,纵坐标为右下角横坐标的偶数的点结束,根据此规律解答即可.
【详解】
解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于直线上最右边的点的横坐标的平方,
例如:右下角的点的横坐标为1,共有1个,,
右下角的点的横坐标为2时,如下图点,共有4个,,
右下角的点的横坐标为3时,共有9个,,
右下角的点的横坐标为4时,如下图点,共有16个,,
右下角的点的横坐标为时,共有个,
,45是奇数,
第2025个点是,
,
点是向上平移4个单位,
第2021个点是.
故答案为:.
【点睛】
本题考查了点的坐标的规律变化,观察出点的个数按照平方数的规律变化是解题的关键.
三、解答题
17.(1);(2)
【分析】
(1)先求绝对值,同时利用计算,再合并即可;
(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可.
【详解】
解:(1)
(2)
【点睛】
本题考
解析:(1);(2)
【分析】
(1)先求绝对值,同时利用计算,再合并即可;
(2)利用乘法的分配率先进行乘法运算,同时求解的立方根,再合并即可.
【详解】
解:(1)
(2)
【点睛】
本题考查的是实数的运算,考查,求一个数的立方根,绝对值的运算,掌握以上知识是解题的关键.
18.(1);(2).
【分析】
(1)根据平方根的性质,直接开方,即可解答;
(2)根据立方根,直接开立方,即可解答.
【详解】
解:(1)
,
.
(2)
.
【点睛】
本题考查平方根、立方根,
解析:(1);(2).
【分析】
(1)根据平方根的性质,直接开方,即可解答;
(2)根据立方根,直接开立方,即可解答.
【详解】
解:(1)
,
.
(2)
.
【点睛】
本题考查平方根、立方根,解决本题的关键是熟记平方根、立方根的相关性质.
19.;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行
【分析】
首先根据平行线的性质可得∠B=∠C,再由∠B+∠D=180°,可得∠C+∠D=180°,根据同旁内角互补,两直线平行可得C
解析:;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行
【分析】
首先根据平行线的性质可得∠B=∠C,再由∠B+∠D=180°,可得∠C+∠D=180°,根据同旁内角互补,两直线平行可得CB∥DE.
【详解】
证明:∵AB∥CD,
∴∠B=∠C(两直线平行,内错角相等),
∵∠B+∠D=180°(已知),
∴∠C+∠D=180°(等量代换),
∴CB∥DE(同旁内角互补,两直线平行).
故答案为:;C;两直线平行,内错角相等;已知;C;同旁内角互补,两直线平行
【点睛】
本题考查了平行线的判定和性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用平行线的性质和判定证明.
20.(1)见解析;(2)见解析;(3)
【分析】
(1)把三角形的各顶点向右平移4个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形;
(2)把三角形的各顶点向下平移5个单位长度,得到、、的对应
解析:(1)见解析;(2)见解析;(3)
【分析】
(1)把三角形的各顶点向右平移4个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形;
(2)把三角形的各顶点向下平移5个单位长度,得到、、的对应点、、,再顺次连接即可得到三角形;
(3)三角形的面积等于边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积.
【详解】
解:(1)平移后的三角形如下图所示;
(2)平移后的三角形如下图所示;
(3)三角形的面积为边长为2的正方形的面积减去2个直角边长为2,1的直角三角形的面积和一个两直角边长为1,1的直角三角形的面积,
∴S△ABC
.
【点睛】
本题考查了作图平移变换,解题的关键是要掌握图形的平移要归结为图形顶点的平移;格点中的三角形的面积通常整理为长方形的面积与几个三角形的面积的差.
21.(1)9,;(2)15
【分析】
(1)根据题意求出所在整数范围,即可求解;
(2)求出a,b然后代入代数式即可.
【详解】
解:(1)∵,即
∴的整数部分为9,小数部分为
(2)∵,即
∴的整数部
解析:(1)9,;(2)15
【分析】
(1)根据题意求出所在整数范围,即可求解;
(2)求出a,b然后代入代数式即可.
【详解】
解:(1)∵,即
∴的整数部分为9,小数部分为
(2)∵,即
∴的整数部分为5,小数部分为
∴,
【点睛】
此题主要考查了二次根式的大小,熟练掌握二次根式的有关性质是解题的关键.
22.(1)5;;(2);;(3)能,.
【分析】
(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.
(2)求出斜边长即可.
(3)一共有10个小正
解析:(1)5;;(2);;(3)能,.
【分析】
(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.
(2)求出斜边长即可.
(3)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,画图.
【详解】
试题分析:
解:(1)拼成的正方形的面积与原面积相等1×1×5=5,
边长为,
如图(1)
(2)斜边长=,
故点A表示的数为:;点A表示的相反数为:
(3)能,如图
拼成的正方形的面积与原面积相等1×1×10=10,边长为.
考点:1.作图—应用与设计作图;2.图形的剪拼.
23.(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析.
【分析】
(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后
解析:(1)∠ABC=100°;(2)∠ABC>∠AFC;(3)∠N=90°﹣∠HAP;理由见解析.
【分析】
(1)过点B作BMHD,则HDGEBM,根据平行线的性质求得∠ABM与∠CBM,便可求得最后结果;
(2)过B作BPHDGE,过F作FQHDGE,由平行线的性质得,∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,由角平分线的性质和已知角的度数分别求得∠HAF,∠FCG,最后便可求得结果;
(3)过P作PKHDGE,先由平行线的性质证明∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,再根据角平分线求得∠NPC与∠PCN,由后由三角形内角和定理便可求得结果.
【详解】
解:(1)过点B作BMHD,则HDGEBM,如图1,
∴∠ABM=180°﹣∠DAB,∠CBM=∠BCG,
∵∠DAB=120°,∠BCG=40°,
∴∠ABM=60°,∠CBM=40°,
∴∠ABC=∠ABM+∠CBM=100°;
(2)过B作BPHDGE,过F作FQHDGE,如图2,
∴∠ABP=∠HAB,∠CBP=∠BCG,∠AFQ=∠HAF,∠CFQ=∠FCG,
∴∠ABC=∠HAB+∠BCG,∠AFC=∠HAF+∠FCG,
∵∠DAB=120°,
∴∠HAB=180°﹣∠DAB=60°,
∵AF平分∠HAB,BC平分∠FCG,∠BCG=20°,
∴∠HAF=30°,∠FCG=40°,
∴∠ABC=60°+20°=80°,∠AFC=30°+40°=70°,
∴∠ABC>∠AFC;
(3)过P作PKHDGE,如图3,
∴∠APK=∠HAP,∠CPK=∠PCG,
∴∠APC=∠HAP+∠PCG,
∵PN平分∠APC,
∴∠NPC=∠HAP+∠PCG,
∵∠PCE=180°﹣∠PCG,CN平分∠PCE,
∴∠PCN=90°﹣∠PCG,
∵∠N+∠NPC+∠PCN=180°,
∴∠N=180°﹣∠HAP﹣∠PCG﹣90°+∠PCG=90°﹣∠HAP,
即:∠N=90°﹣∠HAP.
【点睛】
本题考查了角平分线的定义,平行线性质和判定:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想与方程思想的应用,理清各角度之间的关系是解题的关键,也是本题的难点.
24.(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.
【分析】
(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°
解析:(1)见解析;(2)∠BGD=;(3)2∠BGD+∠BFD=360°.
【分析】
(1)根据角平分线的性质求出∠EBD+∠EDB=(∠ABD+∠BDC),根据平行线的性质∠ABD+∠BDC=180°,从而根据∠BED=180°﹣(∠EBD+∠EDB)即可得到答案;
(2)过点G作GP∥AB,根据AB∥CD,得到GP∥AB∥CD,从而得到∠BGD=∠BGP+∠PGD=∠ABG+∠CDG,然后根据∠EBD+∠EDB=90°,∠ABD+∠BDC=180°,
得到∠ABE+∠EDC=90°,即∠ABE+α+∠FDC=90°,再利用角平分线的定义求出2∠ABG+2∠CDG=90°﹣α即可得到答案;
(3)过点F、G分别作FM∥AB、GM∥AB,从而得到AB∥GM∥FN∥CD,得到∠BGD=∠BGM+∠DGM=∠4+∠6,根据BG平分∠FBP,DG平分∠FDQ,∠4=∠FBP=(180°﹣∠3),∠6=∠FDQ=(180°﹣∠5),即可求解.
【详解】
解:(1)证明:∵BE平分∠ABD,
∴∠EBD=∠ABD,
∵DE平分∠BDC,
∴∠EDB=∠BDC,
∴∠EBD+∠EDB=(∠ABD+∠BDC),
∵AB∥CD,
∴∠ABD+∠BDC=180°,
∴∠EBD+∠EDB=90°,
∴∠BED=180°﹣(∠EBD+∠EDB)=90°.
(2)解:如图2,
由(1)知:∠EBD+∠EDB=90°,
又∵∠ABD+∠BDC=180°,
∴∠ABE+∠EDC=90°,
即∠ABE+α+∠FDC=90°,
∵BG平分∠ABE,DG平分∠CDF,
∴∠ABE=2∠ABG,∠CDF=2∠CDG,
∴2∠ABG+2∠CDG=90°﹣α,
过点G作GP∥AB,
∵AB∥CD,
∴GP∥AB∥CD
∴∠ABG=∠BGP,∠PGD=∠CDG,
∴∠BGD=∠BGP+∠PGD=∠ABG+∠CDG=;
(3)如图,过点F、G分别作FN∥AB、GM∥AB,
∵AB∥CD,
∴AB∥GM∥FN∥CD,
∴∠3=∠BFN,∠5=∠DFN,∠4=∠BGM,∠6=∠DGM,
∴∠BFD=∠BFN+∠DFN=∠3+∠5,
∠BGD=∠BGM+∠DGM=∠4+∠6,
∵BG平分∠FBP,DG平分∠FDQ,
∴∠4=∠FBP=(180°﹣∠3),
∠6=∠FDQ=(180°﹣∠5),
∴∠BFD+∠BGD=∠3+∠5+∠4+∠6,
=∠3+∠5+(180°﹣∠3)+(180°﹣∠5),
=180°+(∠3+∠5),
=180°+∠BFD,
整理得:2∠BGD+∠BFD=360°.
【点睛】
本题主要考查了平行线的性质与判定,角平分线的性质和三角形内角和定理,解题的关键在于能够熟练掌握相关知识进行求解.
展开阅读全文