收藏 分销(赏)

七年级下册数学期中模拟试卷(带答案)完整.doc

上传人:人****来 文档编号:4878747 上传时间:2024-10-17 格式:DOC 页数:25 大小:640.04KB
下载 相关 举报
七年级下册数学期中模拟试卷(带答案)完整.doc_第1页
第1页 / 共25页
七年级下册数学期中模拟试卷(带答案)完整.doc_第2页
第2页 / 共25页
点击查看更多>>
资源描述
七年级下册数学期中模拟试卷(带答案)完整 一、选择题 1.9的算术平方根为() A.9 B. C.3 D. 2.下列各组图形,可经平移变换,由一个图形得到另一个图形的是( ) A. B. C. D. 3.已知 A(−1,2)为平面直角坐标系中一点,下列说法正确的是( ) A.点在第一象限 B.点的横坐标是 C.点到轴的距离是 D.以上都不对 4.下列命题是假命题的是( ) A.对顶角相等 B.两直线平行,同旁内角相等 C.过直线外一点有且只有一条直线与已知直线平行 D.同位角相等,两直线平行 5.将一张边沿互相平行的纸条如图折叠后,若边,则翻折角与一定满足的关系是( ) A. B. C. D. 6.小雪在作业本上做了四道题目:①=﹣3;②±=4;③=9;④=-6,她做对了的题目有(  ) A.1道 B.2道 C.3道 D.4道 7.如图,已知直线,的平分线交于点F,,则等于( ) A. B. C. D. 8.如图,在平面直角坐标系中,,,,,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点处,并按的规律绕在四边形的边上,则细线另--端所在位置的点的坐标是( ) A. B. C. D. 二、填空题 9.4的算术平方根是_____. 10.若与点关于轴对称,则的值是___________; 11.如图,在△ABC中,CD是它的角平分线,DE⊥AC于点 E.若BC=6cm,DE=2cm,则△BCD的面积为_____cm2 12.如图,∠ABC与∠DEF的边BC与DE相交于点G,且BA//DE,BC//EF,如果∠B=54°,那么∠E=__________. 13.如图,在长方形纸片ABCD中,点E、F分别在AD、BC上,将长方形纸片沿直线EF折叠后,点D、C分别落在点D1、C1的位置,如果∠=40°,那么∠EFB的度数是_____度. 14.已知有理数,我们把称为的差倒数,如:2的差倒数是,的差倒数是,如果,是的差倒数,是的差倒数,是的差倒数…依此类推,那么的值是______. 15.已知点A(0,1),B(0 ,2),点C在x轴上,且,则点C的坐标________. 16.如图,在平面直角坐标系中,将正方形①依次平移后得到正方形②,③,④…;相应地,顶点A依次平移得到A1,A2,A3,…,其中A点坐标为(1,0),A1坐标为(0,1),则A20的坐标为__________. 三、解答题 17.计算题 (1). (2); 18.求下列各式中x的值: (1) (2) 19.如图,已知∠1+∠AFE=180°,∠A=∠2,求证:∠A=∠C+∠AFC 证明:∵ ∠1+∠AFE=180° ∴ CD∥EF( , ) ∵∠A=∠2 ∴( ) ( , ) ∴ AB∥CD∥EF( , ) ∴ ∠A= ,∠C= , ( , ) ∵ ∠AFE =∠EFC+∠AFC ,∴ = . 20.如图,在平面直角坐标系中,的顶点都在格点上,点. (1)写出点,的坐标; (2)求的面积. 21.已知a是的整数部分,b是的小数部分. (1)求a,b的值; (2)求的平方根. 22.动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸.我们可以按图2的虚线将它剪开后,重新拼成一个大正方形. (1)基础巩固:拼成的大正方形的面积为______,边长为______; (2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B与数轴上的重合.以点B为圆心,边为半径画圆弧,交数轴于点E,则点E表示的数是______; (3)变式拓展: ①如图4,给定的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的正方形吗?若能,请在图中画出示意图; ②请你利用①中图形在数轴上用直尺和圆规表示面积为13的正方形边长所表示的数. 23.如图1,点在直线、之间,且. (1)求证:; (2)若点是直线上的一点,且,平分交直线于点,若,求的度数; (3)如图3,点是直线、外一点,且满足,,与交于点.已知,且,则的度数为______(请直接写出答案,用含的式子表示). 24.如图,直线,一副直角三角板中,. (1)若如图1摆放,当平分时,证明:平分. (2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数. (4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长. (5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间. 【参考答案】 一、选择题 1.C 解析:C 【分析】 根据算术平方根的定义即可得. 【详解】 解:, 的算术平方根为3, 故选:C. 【点睛】 本题考查了算术平方根,熟记定义是解题关键. 2.B 【分析】 根据平移的性质,结合图形对选项进行一一分析,选出正确答案. 【详解】 解:A、图形的大小发生变化,不符合平移的性质,不属于平移得到; B、图形的形状和大小没有变化,符合平移的性质,属于 解析:B 【分析】 根据平移的性质,结合图形对选项进行一一分析,选出正确答案. 【详解】 解:A、图形的大小发生变化,不符合平移的性质,不属于平移得到; B、图形的形状和大小没有变化,符合平移的性质,属于平移得到; C、图形由轴对称得到,不属于平移得到; D、图形的方向发生变化,不符合平移的性质,不属于平移得到; 故选:B. 【点睛】 本题考查平移的基本性质,平移不改变图形的形状、大小和方向.注意结合图形解题的思想. 3.C 【分析】 根据点的坐标性质以及在坐标轴上点的性质分别判断得出即可. 【详解】 解:A、−1<0,2>0,点在第二象限,原说法错误,该选项不符合题意; B、点的横坐标是−1,原说法错误,该选项不符合题意; C、点到y轴的距离是1,该选项正确,符合题意; D、以上都不对,说法错误,该选项不符合题意; 故选:C. 【点睛】 本题主要考查了点的坐标,根据坐标平面内点的性质得出是解题关键. 4.B 【分析】 真命题就是正确的命题,条件和结果相矛盾的命题是假命题. 【详解】 解:A. 对顶角相等是真命题,故A不符合题意; B. 两直线平行,同旁内角互补,故B是假命题,符合题意; C. 过直线外一点有且只有一条直线与已知直线平行,是真命题,故C不符合题意; D. 同位角相等,两直线平行,是真命题,故D不符合题意, 故选:B. 【点睛】 本题考查真假命题,是基础考点,掌握相关知识是解题关键. 5.B 【分析】 根据平行可得出∠DAB+∠CBA=180°,再根据折叠和平角定义可求出. 【详解】 解:由翻折可知,∠DAE=2,∠CBF=2, ∵, ∴∠DAB+∠CBA=180°, ∴∠DAE+∠CBF=180°, 即, ∴, 故选:B. 【点睛】 本题考查了平行线的性质和角平分线的性质,解题关键是熟练运用平行线的性质进行推理计算. 6.A 【分析】 依据立方根、平方根算术平方根的定义求解即可 【详解】 ①=-3,故①正确;②±=±4,故②错误; =3,故③错误;④=6,故④错误. 故选:A. 【点睛】 此题考查立方根,算术平方根和平方根,掌握运算法则是解题关键 7.B 【分析】 根据平行线的性质推出,,然后结合角平分线的定义求解即可得出,从而得出结论. 【详解】 解:∵, ∴,, ∵的平分线交于点F, ∴, ∴, ∴, 故选:B. 【点睛】 本题考查平行线的性质和角平分线的定义,理解并熟练运用平行线的基本性质是解题关键. 8.B 【分析】 先求出四边形ABCD的周长为10,得到2021÷10的余数为1,由此即可解决问题. 【详解】 解:∵A(1,1),B(-1,1),C(-1,-2),D(1,-2), ∴四边形ABCD的 解析:B 【分析】 先求出四边形ABCD的周长为10,得到2021÷10的余数为1,由此即可解决问题. 【详解】 解:∵A(1,1),B(-1,1),C(-1,-2),D(1,-2), ∴四边形ABCD的周长为10, 2021÷10的余数为1, 又∵AB=2, ∴细线另一端所在位置的点在A处左面1个单位的位置,坐标为(0,1). 故选:B. 【点睛】 本题考查规律型:点的坐标,解题的关键是理解题意,求出四边形ABCD的周长,属于中考常考题型. 二、填空题 9.【详解】 试题分析:∵,∴4算术平方根为2.故答案为2. 考点:算术平方根. 解析:【详解】 试题分析:∵,∴4算术平方根为2.故答案为2. 考点:算术平方根. 10.1 【分析】 根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案. 【详解】 由点与点的坐标关于y轴对称,得: ,, 解得:,, ∴. 故答案为:. 【点睛】 本题 解析:1 【分析】 根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案. 【详解】 由点与点的坐标关于y轴对称,得: ,, 解得:,, ∴. 故答案为:. 【点睛】 本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数. 11.6 【分析】 根据角平分线的性质计算即可; 【详解】 作, ∵CD是角平分线,DE⊥AC, ∴, 又∵BC=6cm, ∴; 故答案是6. 【点睛】 本题主要考查了角平分线的性质,准确计算是解题的关 解析:6 【分析】 根据角平分线的性质计算即可; 【详解】 作, ∵CD是角平分线,DE⊥AC, ∴, 又∵BC=6cm, ∴; 故答案是6. 【点睛】 本题主要考查了角平分线的性质,准确计算是解题的关键. 12.126° 【分析】 根据两直线平行同位角相等得到,,结合邻补角的和180°解题即可. 【详解】 BA//DE,BC//EF, , ∠B=54°, , 故答案为:126°. 【点睛】 本题考查 解析:126° 【分析】 根据两直线平行同位角相等得到,,结合邻补角的和180°解题即可. 【详解】 BA//DE,BC//EF, , ∠B=54°, , 故答案为:126°. 【点睛】 本题考查平行线的性质,是重要考点,难度较易,掌握相关知识是解题关键. 13.70 【分析】 先利用折叠的性质得出∠DEF=∠D1EF,再由利用平角的应用求出∠DEF,最后长方形的性质即可得出结论. 【详解】 解:如图,由折叠可得∠DEF=∠D1EF, ∵∠AED1=40° 解析:70 【分析】 先利用折叠的性质得出∠DEF=∠D1EF,再由利用平角的应用求出∠DEF,最后长方形的性质即可得出结论. 【详解】 解:如图,由折叠可得∠DEF=∠D1EF, ∵∠AED1=40°, ∴∠DEF==70°, ∵四边形ABCD是长方形, ∴AD∥BC, ∴∠EFB=∠DEF=70°. 故答案为:70. 【点睛】 考查了长方形的性质,折叠的性质,关键是利用折叠的性质得出∠DEF=∠D1EF解答. 14.. 【分析】 根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值. 【详解】 ∵, ∴,,,, …… ∴,每三个数一个循环, ∵, ∴, 则 +--3 -3-++ 解析:. 【分析】 根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值. 【详解】 ∵, ∴,,,, …… ∴,每三个数一个循环, ∵, ∴, 则 +--3 -3-++3 =-3-++3 . 故答案为:. 【点晴】 本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值. 15.(4,0)或(﹣4,0) 【详解】 试题解析:设C点坐标为(|x|,0) ∴ 解得:x=±4 所以,点C的坐标为(4,0)或(-4,0). 解析:(4,0)或(﹣4,0) 【详解】 试题解析:设C点坐标为(|x|,0) ∴ 解得:x=±4 所以,点C的坐标为(4,0)或(-4,0). 16.(-19,8) 【分析】 求出A3,A6,A9的坐标,观察得出A3n横坐标为1−3n,可求出A18的坐标,从而可得结论. 【详解】 解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8, 解析:(-19,8) 【分析】 求出A3,A6,A9的坐标,观察得出A3n横坐标为1−3n,可求出A18的坐标,从而可得结论. 【详解】 解:观察图形可知:A3(−2,1),A6(−5,2),A9(−8,3),•••, ∵−2=1−3×1,−5=1−3×2,−8=1−3×3, ∴A3n横坐标为1−3n, ∴A18横坐标为:1−3×6=−17, ∴A18(−17,6), 把A18向左平移2个单位,再向上平移2个单位得到A20, ∴A20(−19,8). 故答案为:(−19,8). 【点睛】 本题主要考查坐标系中点、线段的平移规律.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减. 三、解答题 17.(1)1;(2). 【分析】 (1)先根据绝对值的性质去绝对值符号,再进行加减运算即可; (2)先根据算术平方根、立方根的性质化简,再进行加减运算即可. 【详解】 解:(1)原式=; (2)原式=. 解析:(1)1;(2). 【分析】 (1)先根据绝对值的性质去绝对值符号,再进行加减运算即可; (2)先根据算术平方根、立方根的性质化简,再进行加减运算即可. 【详解】 解:(1)原式=; (2)原式=. 【点睛】 本题考查绝对值、算术平方根、立方根的性质,熟练的掌握性质进行运算是解题的关键. 18.(1);(2) 【分析】 (1)先移项,再把系数化1,然后根据平方根的性质,即可求解; (2)先移项,再根据立方根的性质,即可求解. 【详解】 (1)解:∵ ∴ ∴ ∴; (2)解:∵ ∴ ∴ ∴. 解析:(1);(2) 【分析】 (1)先移项,再把系数化1,然后根据平方根的性质,即可求解; (2)先移项,再根据立方根的性质,即可求解. 【详解】 (1)解:∵ ∴ ∴ ∴; (2)解:∵ ∴ ∴ ∴. 【点睛】 本题主要考查了平方根和立方根的性质,熟练掌握相关性质是解题的关键. 19.同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC . 【分析】 根据同旁 解析:同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC . 【分析】 根据同旁内角互补,两直线平行可得 CD∥EF,根据∠A=∠2利用同位角相等,两直线平行,AB∥CD,根据平行同一直线的两条直线平行可得AB∥CD∥EF根据平行线的性质可得∠A=∠AFE ,∠C=∠EFC,根据角的和可得 ∠AFE =∠EFC+∠AFC 即可. 【详解】 证明:∵ ∠1+∠AFE=180° ∴ CD∥EF(同旁内角互补,两直线平行), ∵∠A=∠2 , ∴( AB∥CD ) (同位角相等,两直线平行), ∴ AB∥CD∥EF(两条直线都与第三条直线平行,则这两直线也互相平行) ∴ ∠A= ∠AFE ,∠C= ∠EFC,(两直线平行,内错角相等) ∵ ∠AFE =∠EFC+∠AFC , ∴ ∠A = ∠C+∠AFC . 故答案为同旁内角互补两直线平行;AB∥CD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;∠AFE,∠EFC;两直线平行,内错角相等;∠A,∠C+∠AFC . 【点睛】 本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键. 20.(1),;(2)9 【分析】 (1)根据坐标的特性以及C点坐标,直接可以得出A、B的坐标 (2)利用面积的和差求解:三角形ABC的面积等于一个长方形的面积减去三个直角三角形的面积. 【详解】 解:( 解析:(1),;(2)9 【分析】 (1)根据坐标的特性以及C点坐标,直接可以得出A、B的坐标 (2)利用面积的和差求解:三角形ABC的面积等于一个长方形的面积减去三个直角三角形的面积. 【详解】 解:(1), (2) 【点睛】 本题考查了坐标上的点以及求坐标上图形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键. 21.(1)a=2,b=;(2)±3 【分析】 (1)首先估算出的范围,从而得到和的范围,可得a,b值; (2)将a,b的值代入计算,再求平方根即可. 【详解】 解:(1)∵, ∴, ∴,, ∴a=2,b 解析:(1)a=2,b=;(2)±3 【分析】 (1)首先估算出的范围,从而得到和的范围,可得a,b值; (2)将a,b的值代入计算,再求平方根即可. 【详解】 解:(1)∵, ∴, ∴,, ∴a=2,b=; (2) = = ∴的平方根为±3. 【点睛】 此题主要考查了估算无理数的大小,平方根的定义,正确得出a,b的值是解题关键. 22.(1)10,;(2);(3)见解析;(4)见解析 【分析】 (1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长; (2)根据大正方形的边长结合实 解析:(1)10,;(2);(3)见解析;(4)见解析 【分析】 (1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长; (2)根据大正方形的边长结合实数与数轴的关系可得结果; (3)以2×3的长方形的对角线为边长即可画出图形; (4)得到①中正方形的边长,再利用实数与数轴的关系可画出图形. 【详解】 解:(1)∵图1中有10个小正方形, ∴面积为10,边长AD为; (2)∵BC=,点B表示的数为-1, ∴BE=, ∴点E表示的数为; (3)①如图所示: ②∵正方形面积为13, ∴边长为, 如图,点E表示面积为13的正方形边长. 【点睛】 本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键. 23.(1)见解析;(2)10°;(3) 【分析】 (1)过点E作EF∥CD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明; (2)过点E作HE∥CD,设 由(1)得AB∥CD 解析:(1)见解析;(2)10°;(3) 【分析】 (1)过点E作EF∥CD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明; (2)过点E作HE∥CD,设 由(1)得AB∥CD,则AB∥CD∥HE,由平行线的性质,得出再由平分,得出则,则可列出关于x和y的方程,即可求得x,即的度数; (3)过点N作NP∥CD,过点M作QM∥CD,由(1)得AB∥CD,则NP∥CD∥AB∥QM,根据和,得出根据CD∥PN∥QM,DE∥NB,得出即根据NP∥AB,得出再由,得出由AB∥QM,得出因为,代入的式子即可求出. 【详解】 (1)过点E作EF∥CD,如图, ∵EF∥CD, ∴ ∴ ∵, ∴ ∴EF∥AB, ∴CD∥AB; (2)过点E作HE∥CD,如图, 设 由(1)得AB∥CD,则AB∥CD∥HE, ∴ ∴ 又∵平分, ∴ ∴ 即 解得:即; (3)过点N作NP∥CD,过点M作QM∥CD,如图, 由(1)得AB∥CD,则NP∥CD∥AB∥QM, ∵NP∥CD,CD∥QM, ∴, 又∵, ∴ ∵, ∴ ∴ 又∵PN∥AB, ∴ ∵, ∴ 又∵AB∥QM, ∴ ∴ ∴. 【点睛】 本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系. 24.(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】 (1)运用角平分线定义及平行线性质即可证得结论; (2)如图2,过点E作EK∥MN,利用平行线性 解析:(1)见详解;(2)15°;(3)67.5°;(4)45cm;(5)10s或30s或40s 【分析】 (1)运用角平分线定义及平行线性质即可证得结论; (2)如图2,过点E作EK∥MN,利用平行线性质即可求得答案; (3)如图3,分别过点F、H作FL∥MN,HR∥PQ,运用平行线性质和角平分线定义即可得出答案; (4)根据平移性质可得D′A=DF,DD′=EE′=AF=5cm,再结合DE+EF+DF=35cm,可得出答案; (5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°,分三种情况:①当BC∥DE时,②当BC∥EF时,③当BC∥DF时,分别求出旋转角度后,列方程求解即可. 【详解】 (1)如图1,在△DEF中,∠EDF=90°,∠DFE=30°,∠DEF=60°, ∵ED平分∠PEF, ∴∠PEF=2∠PED=2∠DEF=2×60°=120°, ∵PQ∥MN, ∴∠MFE=180°−∠PEF=180°−120°=60°, ∴∠MFD=∠MFE−∠DFE=60°−30°=30°, ∴∠MFD=∠DFE, ∴FD平分∠EFM; (2)如图2,过点E作EK∥MN, ∵∠BAC=45°, ∴∠KEA=∠BAC=45°, ∵PQ∥MN,EK∥MN, ∴PQ∥EK, ∴∠PDE=∠DEK=∠DEF−∠KEA, 又∵∠DEF=60°. ∴∠PDE=60°−45°=15°, 故答案为:15°; (3)如图3,分别过点F、H作FL∥MN,HR∥PQ, ∴∠LFA=∠BAC=45°,∠RHG=∠QGH, ∵FL∥MN,HR∥PQ,PQ∥MN, ∴FL∥PQ∥HR, ∴∠QGF+∠GFL=180°,∠RHF=∠HFL=∠HFA−∠LFA, ∵∠FGQ和∠GFA的角平分线GH、FH相交于点H, ∴∠QGH=∠FGQ,∠HFA=∠GFA, ∵∠DFE=30°, ∴∠GFA=180°−∠DFE=150°, ∴∠HFA=∠GFA=75°, ∴∠RHF=∠HFL=∠HFA−∠LFA=75°−45°=30°, ∴∠GFL=∠GFA−∠LFA=150°−45°=105°, ∴∠RHG=∠QGH=∠FGQ=(180°−105°)=37.5°, ∴∠GHF=∠RHG+∠RHF=37.5°+30°=67.5°; (4)如图4,∵将△DEF沿着CA方向平移至点F与A重合,平移后的得到△D′E′A, ∴D′A=DF,DD′=EE′=AF=5cm, ∵DE+EF+DF=35cm, ∴DE+EF+D′A+AF+DD′=35+10=45(cm), 即四边形DEAD′的周长为45cm; (5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3°, 分三种情况: BC∥DE时,如图5,此时AC∥DF, ∴∠CAE=∠DFE=30°, ∴3t=30, 解得:t=10; BC∥EF时,如图6, ∵BC∥EF, ∴∠BAE=∠B=45°, ∴∠BAM=∠BAE+∠EAM=45°+45°=90°, ∴3t=90, 解得:t=30; BC∥DF时,如图7,延长BC交MN于K,延长DF交MN于R, ∵∠DRM=∠EAM+∠DFE=45°+30°=75°, ∴∠BKA=∠DRM=75°, ∵∠ACK=180°−∠ACB=90°, ∴∠CAK=90°−∠BKA=15°, ∴∠CAE=180°−∠EAM−∠CAK=180°−45°−15°=120°, ∴3t=120, 解得:t=40, 综上所述,△ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与△DEF的一条边平行. 【点睛】 本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服