1、七年级下册数学期中模拟试卷(带答案)完整一、选择题19的算术平方根为()A9BC3D2下列各组图形,可经平移变换,由一个图形得到另一个图形的是( )ABCD3已知 A(1,2)为平面直角坐标系中一点,下列说法正确的是( )A点在第一象限B点的横坐标是C点到轴的距离是D以上都不对4下列命题是假命题的是( )A对顶角相等B两直线平行,同旁内角相等C过直线外一点有且只有一条直线与已知直线平行D同位角相等,两直线平行5将一张边沿互相平行的纸条如图折叠后,若边,则翻折角与一定满足的关系是( )ABCD6小雪在作业本上做了四道题目:3;4;9;-6,她做对了的题目有()A1道B2道C3道D4道7如图,已知
2、直线,的平分线交于点F,则等于( )ABCD8如图,在平面直角坐标系中,把一条长为2021个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点处,并按的规律绕在四边形的边上,则细线另-端所在位置的点的坐标是( )ABCD二、填空题94的算术平方根是_10若与点关于轴对称,则的值是_;11如图,在ABC中,CD是它的角平分线,DEAC于点 E若BC6cm,DE2cm,则BCD的面积为_cm212如图,ABC与DEF的边BC与DE相交于点G,且BA/DE,BC/EF,如果B=54,那么E=_13如图,在长方形纸片ABCD中,点E、F分别在AD、BC上,将长方形纸片沿直线EF折叠后,点D、C
3、分别落在点D1、C1的位置,如果=40,那么EFB的度数是_度14已知有理数,我们把称为的差倒数,如:2的差倒数是,的差倒数是,如果,是的差倒数,是的差倒数,是的差倒数依此类推,那么的值是_15已知点A(0,1),B(0 ,2),点C在x轴上,且,则点C的坐标_.16如图,在平面直角坐标系中,将正方形依次平移后得到正方形,;相应地,顶点A依次平移得到A1,A2,A3,其中A点坐标为(1,0),A1坐标为(0,1),则A20的坐标为_三、解答题17计算题(1). (2);18求下列各式中x的值:(1)(2)19如图,已知1+AFE=180,A=2,求证:A=C+AFC 证明: 1+AFE=180
4、 CDEF( , )A=2 ( ) ( , ) ABCDEF( , ) A= ,C= ,( , ) AFE =EFC+AFC , = 20如图,在平面直角坐标系中,的顶点都在格点上,点(1)写出点,的坐标;(2)求的面积21已知a是的整数部分,b是的小数部分(1)求a,b的值; (2)求的平方根22动手试一试,如图1,纸上有10个边长为1的小正方形组成的图形纸我们可以按图2的虚线将它剪开后,重新拼成一个大正方形(1)基础巩固:拼成的大正方形的面积为_,边长为_;(2)知识运用:如图3所示,将图2水平放置在数轴上,使得顶点B与数轴上的重合以点B为圆心,边为半径画圆弧,交数轴于点E,则点E表示的数
5、是_;(3)变式拓展:如图4,给定的方格纸(每个小正方形边长为1),你能从中剪出一个面积为13的正方形吗?若能,请在图中画出示意图;请你利用中图形在数轴上用直尺和圆规表示面积为13的正方形边长所表示的数23如图1,点在直线、之间,且(1)求证:;(2)若点是直线上的一点,且,平分交直线于点,若,求的度数;(3)如图3,点是直线、外一点,且满足,与交于点已知,且,则的度数为_(请直接写出答案,用含的式子表示)24如图,直线,一副直角三角板中,(1)若如图1摆放,当平分时,证明:平分(2)若如图2摆放时,则 (3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求
6、的度数(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间【参考答案】一、选择题1C解析:C【分析】根据算术平方根的定义即可得【详解】解:,的算术平方根为3,故选:C【点睛】本题考查了算术平方根,熟记定义是解题关键2B【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案【详解】解:A、图形的大小发生变化,不符合平移的性质,不属于平移得到;B、图形的形状和大小没有变化,符合平移的性质,属于解析
7、:B【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案【详解】解:A、图形的大小发生变化,不符合平移的性质,不属于平移得到;B、图形的形状和大小没有变化,符合平移的性质,属于平移得到;C、图形由轴对称得到,不属于平移得到;D、图形的方向发生变化,不符合平移的性质,不属于平移得到;故选:B【点睛】本题考查平移的基本性质,平移不改变图形的形状、大小和方向注意结合图形解题的思想3C【分析】根据点的坐标性质以及在坐标轴上点的性质分别判断得出即可【详解】解:A、10,点在第二象限,原说法错误,该选项不符合题意;B、点的横坐标是1,原说法错误,该选项不符合题意;C、点到y轴的距离是1,该选项
8、正确,符合题意;D、以上都不对,说法错误,该选项不符合题意;故选:C【点睛】本题主要考查了点的坐标,根据坐标平面内点的性质得出是解题关键4B【分析】真命题就是正确的命题,条件和结果相矛盾的命题是假命题【详解】解:A. 对顶角相等是真命题,故A不符合题意;B. 两直线平行,同旁内角互补,故B是假命题,符合题意;C. 过直线外一点有且只有一条直线与已知直线平行,是真命题,故C不符合题意;D. 同位角相等,两直线平行,是真命题,故D不符合题意,故选:B【点睛】本题考查真假命题,是基础考点,掌握相关知识是解题关键5B【分析】根据平行可得出DAB+CBA=180,再根据折叠和平角定义可求出【详解】解:由
9、翻折可知,DAE=2,CBF=2,,DAB+CBA=180,DAE+CBF=180,即,故选:B【点睛】本题考查了平行线的性质和角平分线的性质,解题关键是熟练运用平行线的性质进行推理计算6A【分析】依据立方根、平方根算术平方根的定义求解即可【详解】=-3,故正确;=4,故错误;=3,故错误;=6,故错误故选:A.【点睛】此题考查立方根,算术平方根和平方根,掌握运算法则是解题关键7B【分析】根据平行线的性质推出,然后结合角平分线的定义求解即可得出,从而得出结论【详解】解:,的平分线交于点F,故选:B【点睛】本题考查平行线的性质和角平分线的定义,理解并熟练运用平行线的基本性质是解题关键8B【分析】
10、先求出四边形ABCD的周长为10,得到202110的余数为1,由此即可解决问题【详解】解:A(1,1),B(-1,1),C(-1,-2),D(1,-2),四边形ABCD的解析:B【分析】先求出四边形ABCD的周长为10,得到202110的余数为1,由此即可解决问题【详解】解:A(1,1),B(-1,1),C(-1,-2),D(1,-2),四边形ABCD的周长为10,202110的余数为1,又AB=2,细线另一端所在位置的点在A处左面1个单位的位置,坐标为(0,1)故选:B【点睛】本题考查规律型:点的坐标,解题的关键是理解题意,求出四边形ABCD的周长,属于中考常考题型二、填空题9【详解】试题分
11、析:,4算术平方根为2故答案为2考点:算术平方根解析:【详解】试题分析:,4算术平方根为2故答案为2考点:算术平方根101【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案【详解】由点与点的坐标关于y轴对称,得:,解得:,故答案为:【点睛】本题解析:1【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数,可得m、n的值,代入计算可得答案【详解】由点与点的坐标关于y轴对称,得:,解得:,故答案为:【点睛】本题考查了关于y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标
12、相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数116【分析】根据角平分线的性质计算即可;【详解】作,CD是角平分线,DEAC,又BC6cm,;故答案是6【点睛】本题主要考查了角平分线的性质,准确计算是解题的关解析:6【分析】根据角平分线的性质计算即可;【详解】作,CD是角平分线,DEAC,又BC6cm,;故答案是6【点睛】本题主要考查了角平分线的性质,准确计算是解题的关键12126【分析】根据两直线平行同位角相等得到,结合邻补角的和180解题即可【详解】BA/DE,BC/EF,B=54,故答案为:126【点睛】本题考查解析:126【分析】根据两直线平行同位角相等得到,结合
13、邻补角的和180解题即可【详解】BA/DE,BC/EF,B=54,故答案为:126【点睛】本题考查平行线的性质,是重要考点,难度较易,掌握相关知识是解题关键1370【分析】先利用折叠的性质得出DEFD1EF,再由利用平角的应用求出DEF,最后长方形的性质即可得出结论【详解】解:如图,由折叠可得DEFD1EF,AED140解析:70【分析】先利用折叠的性质得出DEFD1EF,再由利用平角的应用求出DEF,最后长方形的性质即可得出结论【详解】解:如图,由折叠可得DEFD1EF,AED140,DEF70,四边形ABCD是长方形,ADBC,EFBDEF70故答案为:70【点睛】考查了长方形的性质,折叠
14、的性质,关键是利用折叠的性质得出DEFD1EF解答14【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值【详解】,每三个数一个循环,则+-3 -3-+解析:【分析】根据题意,可以写出这列数的前几项,从而可以发现数字的变化规律,从而可以求得所求式子的值【详解】,每三个数一个循环,则+-3 -3-+3=-3-+3故答案为:【点晴】本题考查数字的变化类,解答本题的关键是明确题意,发现数字的变化特点,求出所求式子的值15(4,0)或(4,0)【详解】试题解析:设C点坐标为(|x|,0) 解得:x=4所以,点C的坐标为(4,0)或(-4,0).解析:(4,0)
15、或(4,0)【详解】试题解析:设C点坐标为(|x|,0) 解得:x=4所以,点C的坐标为(4,0)或(-4,0).16(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n横坐标为13n,可求出A18的坐标,从而可得结论【详解】解:观察图形可知:A3(2,1),A6(5,2),A9(8,解析:(-19,8)【分析】求出A3,A6,A9的坐标,观察得出A3n横坐标为13n,可求出A18的坐标,从而可得结论【详解】解:观察图形可知:A3(2,1),A6(5,2),A9(8,3),2131,5132,8133,A3n横坐标为13n,A18横坐标为:13617,A18(17,6),把A18向
16、左平移2个单位,再向上平移2个单位得到A20,A20(19,8)故答案为:(19,8)【点睛】本题主要考查坐标系中点、线段的平移规律在平面直角坐标系中,图形的平移与图形上某点的平移相同平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减三、解答题17(1)1;(2).【分析】(1)先根据绝对值的性质去绝对值符号,再进行加减运算即可;(2)先根据算术平方根、立方根的性质化简,再进行加减运算即可.【详解】解:(1)原式=;(2)原式=.解析:(1)1;(2).【分析】(1)先根据绝对值的性质去绝对值符号,再进行加减运算即可;(2)先根据算术平方根、立方根的性质化简,再进行加减运算即可.
17、【详解】解:(1)原式=;(2)原式=.【点睛】本题考查绝对值、算术平方根、立方根的性质,熟练的掌握性质进行运算是解题的关键.18(1);(2)【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解【详解】(1)解:;(2)解:解析:(1);(2)【分析】(1)先移项,再把系数化1,然后根据平方根的性质,即可求解;(2)先移项,再根据立方根的性质,即可求解【详解】(1)解:;(2)解:【点睛】本题主要考查了平方根和立方根的性质,熟练掌握相关性质是解题的关键19同旁内角互补两直线平行;ABCD;同位角相等,两直线平行;两条直线都与第三条直线
18、平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【分析】根据同旁解析:同旁内角互补两直线平行;ABCD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【分析】根据同旁内角互补,两直线平行可得 CDEF,根据A=2利用同位角相等,两直线平行,ABCD,根据平行同一直线的两条直线平行可得ABCDEF根据平行线的性质可得A=AFE ,C=EFC,根据角的和可得 AFE =EFC+AFC 即可【详解】证明: 1+AFE=180 CDEF(同旁内角互补,两直线平行),A=2 ,( AB
19、CD ) (同位角相等,两直线平行), ABCDEF(两条直线都与第三条直线平行,则这两直线也互相平行) A= AFE ,C= EFC,(两直线平行,内错角相等) AFE =EFC+AFC , A = C+AFC 故答案为同旁内角互补两直线平行;ABCD;同位角相等,两直线平行;两条直线都与第三条直线平行,则这两直线也互相平行;AFE,EFC;两直线平行,内错角相等;A,C+AFC 【点睛】本题考查平行线的性质与判定,角的和差,掌握平行线的性质与判定是解题关键20(1),;(2)9【分析】(1)根据坐标的特性以及C点坐标,直接可以得出A、B的坐标(2)利用面积的和差求解:三角形ABC的面积等于
20、一个长方形的面积减去三个直角三角形的面积【详解】解:(解析:(1),;(2)9【分析】(1)根据坐标的特性以及C点坐标,直接可以得出A、B的坐标(2)利用面积的和差求解:三角形ABC的面积等于一个长方形的面积减去三个直角三角形的面积【详解】解:(1), (2) 【点睛】本题考查了坐标上的点以及求坐标上图形的面积,熟练掌握网格结构准确找出对应点的位置是解题的关键21(1)a=2,b=;(2)3【分析】(1)首先估算出的范围,从而得到和的范围,可得a,b值;(2)将a,b的值代入计算,再求平方根即可【详解】解:(1),a=2,b解析:(1)a=2,b=;(2)3【分析】(1)首先估算出的范围,从而
21、得到和的范围,可得a,b值;(2)将a,b的值代入计算,再求平方根即可【详解】解:(1),a=2,b=;(2)=的平方根为3【点睛】此题主要考查了估算无理数的大小,平方根的定义,正确得出a,b的值是解题关键22(1)10,;(2);(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实解析:(1)10,;(2);(3)见解析;(4)见解析【分析】(1)易得10个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长;(2)根据大正方形的边长结合实
22、数与数轴的关系可得结果;(3)以23的长方形的对角线为边长即可画出图形;(4)得到中正方形的边长,再利用实数与数轴的关系可画出图形【详解】解:(1)图1中有10个小正方形,面积为10,边长AD为;(2)BC=,点B表示的数为-1,BE=,点E表示的数为;(3)如图所示:正方形面积为13,边长为,如图,点E表示面积为13的正方形边长【点睛】本题考查了图形的剪拼,正方形的面积,算术平方根,实数与数轴,巧妙地根据网格的特点画出正方形是解此题的关键23(1)见解析;(2)10;(3)【分析】(1)过点E作EFCD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明;(2)过点E作
23、HECD,设 由(1)得ABCD解析:(1)见解析;(2)10;(3)【分析】(1)过点E作EFCD,根据平行线的性质,两直线平行,内错角相等,得出结合已知条件,得出即可证明;(2)过点E作HECD,设 由(1)得ABCD,则ABCDHE,由平行线的性质,得出再由平分,得出则,则可列出关于x和y的方程,即可求得x,即的度数;(3)过点N作NPCD,过点M作QMCD,由(1)得ABCD,则NPCDABQM,根据和,得出根据CDPNQM,DENB,得出即根据NPAB,得出再由,得出由ABQM,得出因为,代入的式子即可求出【详解】(1)过点E作EFCD,如图,EFCD, , EFAB,CDAB;(2
24、)过点E作HECD,如图,设 由(1)得ABCD,则ABCDHE,又平分,即解得:即;(3)过点N作NPCD,过点M作QMCD,如图,由(1)得ABCD,则NPCDABQM,NPCD,CDQM,,又, , 又PNAB, , 又ABQM, 【点睛】本题考查平行线的性质,角平分线的定义,解决问题的关键是作平行线构造相等的角,利用两直线平行,内错角相等,同位角相等来计算和推导角之间的关系24(1)见详解;(2)15;(3)67.5;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EKMN,利用平行线性解析:(1)见详解;(2)
25、15;(3)67.5;(4)45cm;(5)10s或30s或40s【分析】(1)运用角平分线定义及平行线性质即可证得结论;(2)如图2,过点E作EKMN,利用平行线性质即可求得答案;(3)如图3,分别过点F、H作FLMN,HRPQ,运用平行线性质和角平分线定义即可得出答案;(4)根据平移性质可得DADF,DDEEAF5cm,再结合DEEFDF35cm,可得出答案;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:当BCDE时,当BCEF时,当BCDF时,分别求出旋转角度后,列方程求解即可【详解】(1)如图1,在DEF中,EDF90,DFE30,DEF60,ED平分P
26、EF,PEF2PED2DEF260120,PQMN,MFE180PEF18012060,MFDMFEDFE603030,MFDDFE,FD平分EFM;(2)如图2,过点E作EKMN,BAC45,KEABAC45,PQMN,EKMN,PQEK,PDEDEKDEFKEA,又DEF60PDE604515,故答案为:15;(3)如图3,分别过点F、H作FLMN,HRPQ,LFABAC45,RHGQGH,FLMN,HRPQ,PQMN,FLPQHR,QGFGFL180,RHFHFLHFALFA,FGQ和GFA的角平分线GH、FH相交于点H,QGHFGQ,HFAGFA,DFE30,GFA180DFE150,
27、HFAGFA75,RHFHFLHFALFA754530,GFLGFALFA15045105,RHGQGHFGQ(180105)37.5,GHFRHGRHF37.53067.5;(4)如图4,将DEF沿着CA方向平移至点F与A重合,平移后的得到DEA,DADF,DDEEAF5cm,DEEFDF35cm,DEEFDAAFDD351045(cm),即四边形DEAD的周长为45cm;(5)设旋转时间为t秒,由题意旋转速度为1分钟转半圈,即每秒转3,分三种情况:BCDE时,如图5,此时ACDF,CAEDFE30,3t30,解得:t10;BCEF时,如图6,BCEF,BAEB45,BAMBAEEAM454590,3t90,解得:t30;BCDF时,如图7,延长BC交MN于K,延长DF交MN于R,DRMEAMDFE453075,BKADRM75,ACK180ACB90,CAK90BKA15,CAE180EAMCAK1804515120,3t120,解得:t40,综上所述,ABC绕点A顺时针旋转的时间为10s或30s或40s时,线段BC与DEF的一条边平行【点睛】本题主要考查了平行线性质及判定,角平分线定义,平移的性质等,添加辅助线,利用平行线性质是解题关键