收藏 分销(赏)

七年级下册数学期中模拟试卷(含答案)完整.doc

上传人:天**** 文档编号:5196711 上传时间:2024-10-28 格式:DOC 页数:22 大小:693.54KB
下载 相关 举报
七年级下册数学期中模拟试卷(含答案)完整.doc_第1页
第1页 / 共22页
七年级下册数学期中模拟试卷(含答案)完整.doc_第2页
第2页 / 共22页
七年级下册数学期中模拟试卷(含答案)完整.doc_第3页
第3页 / 共22页
七年级下册数学期中模拟试卷(含答案)完整.doc_第4页
第4页 / 共22页
七年级下册数学期中模拟试卷(含答案)完整.doc_第5页
第5页 / 共22页
点击查看更多>>
资源描述

1、七年级下册数学期中模拟试卷(含答案)完整一、选择题19的算术平方根是()A81B3CD42下列图形中,能将其中一个图形平移得到另一个图形的是 ( )ABCD3若点在第四象限,则点在( )A第一象限B第二象限C第三象限D第四象限4下列语句中,是假命题的是()A有理数和无理数统称实数B在同一平面内,过一点有且只有一条直线与已知直线垂直C在同一平面内,垂直于同一条直线的两条直线互相平行D两个锐角的和是锐角5如图,直线,点分别在直线上,P为两平行线间一点,那么等于( )ABCD6如图,数轴上的点A所表示的数为x,则x210的立方根为()A10B10C2D27如图:ABCD,OE平分BOC,OFOE,O

2、PCD,ABO40,则下列结论:OF平分BOD;POEBOF;BOE70;POB2DOF,其中结论正确的序号是( )ABCD8如图,在平面直角坐标系中,存在动点P按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),按这样的运动规律,经过第2021次运动后,点P的坐标是( )A(2022,1)B(2021,0)C(2021,1)D(2021,2)二、填空题9已知x,y为实数,且,则x-y=_10在平面直角坐标系中,点与点关于轴对称,则的值是_11如图,点D是ABC三边垂直平分线的交点,若A64,则D_12如图,已知ab,如果170,

3、235,那么3_度13如图,在四边形ABCD纸片中,ADBC,ABCD将纸片折叠,点A、B分别落在G、H处,EF为折痕,FH交CD于点K若CKF35,则A+GED_14a是不为2的有理数,我们把2称为a的“文峰数”如:3的“文峰数”是,-2的“文峰数”是,已知a1=3,a2是a1的“文峰数”, a3是a2的“文峰数”, a4是a3的“文峰数”,以此类推,则a2020=_15若P(2a,2a+3)到两坐标轴的距离相等,则点P的坐标是_16如图,在平面直角坐标系上有点A(1,0),第一次点A跳动至点A1(1,1),第二次点A1跳动至点A2(2,1),第三次点A2跳动至点A3(2,2),第四次点A3

4、跳动至点A4(3,2),依此规律跳动下去,则点A2021与点A2022之间的距离是_三、解答题17计算下列各题:(1) (2).18求下列各式中的值:(1);(2)19学习如何书写规范的证明过程,补充完整,并完成后面问题已知:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DEBA,AFDE求证:FDAC证明:DEBA(已知) BFD ( )又 AFDE (等量代换)FDCA( )模仿上面的证明过程,用另一种方法证明FDAC20如图,每个小正方形的边长为1,利用网格点画图和无刻度的直尺画图(保留画图痕迹):(I)在方格纸内将三角形经过一次平移后得到三角形,图中标出了点的对应点,

5、画出三角形;(2)过点画线段使且;(3)图中与的关系是_;(4)点在线段上,点是直线上一动点线段的最小值为_21数学张老师在课堂上提出一个问题:“通过探究知道:,它是个无限不循环小数,也叫无理数,它的整数部分是1,那么有谁能说出它的小数部分是多少”,小明举手回答:它的小数部分我们无法全部写出来,但可以用来表示它的小数部分,张老师夸奖小明真聪明,肯定了他的说法现请你根据小明的说法解答:(1)的小数部分是多少,请表示出来(2)a为的小数部分,b为的整数部分,求的值(3)已知8+=x+y,其中x是一个正整数,0y1,求的值22如图,8块相同的小长方形地砖拼成一个大长方形,(1)每块小长方形地砖的长和

6、宽分别是多少?(要求列方程组进行解答)(2)小明想用一块面积为7平方米的正方形桌布,沿着边的方向裁剪出一块新的长方形桌布,用来盖住这块长方形木桌,你帮小明算一算,他能剪出符合要求的桌布吗?23如图1,已知直线mn,AB 是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即OPA=QPB(1)如图1,若OPQ=82,求OPA的度数;(2)如图2,若AOP=43,BQP=49,求OPA的度数;(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另

7、一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为 OPQROP试判断OPQ和ORQ的数量关系,并说明理由24如图,平分,设为,点E是射线上的一个动点(1)若时,且,求的度数;(2)若点E运动到上方,且满足,求的值;(3)若,求的度数(用含n和的代数式表示)【参考答案】一、选择题1B解析:B【分析】如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记为【详解】解:=3,故选:B【点睛】本题考查了算术平方根的定义,解题时注意算术平方根与平方根的区别2A【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案【详解】解:A、图

8、形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形由轴对称得到,不属于平移得到,不属于平移解析:A【分析】根据平移的性质,结合图形对选项进行一一分析,选出正确答案【详解】解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形由轴对称得到,不属于平移得到,不属于平移得到; C、图形由旋转变换得到,不符合平移的性质,不属于平移得到; D、图形的大小发生变化,不属于平移得到;故选:A【点睛】本题考查平移的基本性质,平移不改变图形的形状、大小和方向掌握平移的性质是解题的关键3A【分析】首先得出第四象限点的坐标性质,进而得出Q点的位置【详解】解:点P(a,b)在第四象限,a

9、0,b0,-b0,点Q(-b,a)在第一象限故选:A【点睛】此题主要考查了点的坐标,正确把握各象限点的坐标特点是解题关键4D【分析】根据实数的分类,垂直的性质,平行线的判定,锐角的定义逐项分析即可【详解】A. 有理数和无理数统称实数,正确,是真命题,不符合题意;B. 在同一平面内,过一点有且只有一条直线与已知直线垂直,正确,是真命题,不符合题意;C. 在同一平面内,垂直于同一条直线的两条直线互相平行,正确,是真命题,不符合题意;D. 两个锐角的和不一定是锐角,例如,故D选项是假命题,符合题意故选D【点睛】本题考查了真假命题的判定,实数的分类,垂直的性质,平行线的判定,锐角的定义,掌握相关性质定

10、理是解题的关键5A【分析】过点P作PEa则可得出PEab,结合“两直线平行,内错角相等”可得出2=AMP+BNP,再结合邻补角的即可得出结论【详解】解:过点P作PEa,如图所示PEa,ab,PEab,AMP=MPE,BNP=NPE,2=MPE+NPE=AMP+BNP1+AMP=180,3+BNP=180,1+2+3=180+180=360故选:A【点睛】本题考查了平行线的性质以及角的计算,解题的关键是找出2=AMP+BNP本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键6D【分析】先根据在数轴上的直角三角形运用勾股定理可得斜边长,即可得x的值,进而可得则

11、的值,再根据立方根的定义即可求得其立方根【详解】根据图象:直角三角形两边长分别为2和1,x在数轴原点左面,则,则它的立方根为;故选:D【点睛】本题考查的知识点是实数与数轴上的点的对应关系及勾股定理,解题关键是应注意数形结合,来判断A点表示的实数7A【分析】根据ABCD可得BOD=ABO=40,利用平角得到COB=140,再根据角平分线的定义得到BOE=70,则正确;利用OPCD,ABCD,ABO=40,可得POB=50,BOF=20,FOD=20,进而可得OF平分BOD,则正确;由EOB=70,POB=50,POE=20,由BOF=POF-POB=20,进而可得POE=BOF,则正确;由可知P

12、OB=50,FOD=20,则不正确【详解】ABCD,BOD=ABO=40,COB=180-40=140,又OE平分BOC,BOE=COB=140=70,故正确;OPCD,POD=90,又ABCD,BPO=90,又ABO=40,POB=90-40=50,BOF=POF-POB=70-50=20,FOD=40-20=20,OF平分BOD,故正确;EOB=70,POB=90-40=50,POE=70-50=20,又BOF=POF-POB=70-50=20,POE=BOF,故正确;由可知POB=90-40=50,FOD=40-20=20,故POB2DOF,故不正确故结论正确的是,故选A【点睛】本题考查

13、了平行线的性质,解题的关键是要注意将垂直、平行、角平分线的定义结合应用,弄清图中线段和角的关系,再进行解答8C【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,4个数一个循环,进而可得经过第2021次运动后,动点P的坐标【详解】解:观察点的坐标变化可知:第1次从原解析:C【分析】观察点的坐标变化发现每个点的横坐标与次数相等,纵坐标是1,0,2,0,4个数一个循环,进而可得经过第2021次运动后,动点P的坐标【详解】解:观察点的坐标变化可知:第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),第4次接着运动到点(4,0),第5次

14、接着运动到点(5,1),按这样的运动规律,发现每个点的横坐标与次数相等,纵坐标是1,0,2,0;4个数一个循环,所以202145051,所以经过第2021次运动后,动点P的坐标是(2021,1)故选:C【点睛】本题考查了规律型点的坐标,解决本题的关键是观察点的坐标变化寻找规律二、填空题9-1【分析】根据算术平方根的非负性和平方的非负性即可求出x和y,代入求值即可【详解】解:,解得:x-y=-1故答案为:-1【点睛】此题考查的是非负性的应用,掌握算术平方解析:-1【分析】根据算术平方根的非负性和平方的非负性即可求出x和y,代入求值即可【详解】解:,解得:x-y=-1故答案为:-1【点睛】此题考查

15、的是非负性的应用,掌握算术平方根的非负性和平方的非负性是解决此题的关键104【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.【详解】点与点关于轴对称,则a+b的值是:,故答案为【点睛】本题考查了关于x轴对称的解析:4【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.【详解】点与点关于轴对称,则a+b的值是:,故答案为【点睛】本题考查了关于x轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.11128【解析】【分析】由点D为三边垂直平分线交点,得到点D为ABC的外心,根据同弧所对的圆周角等于

16、圆心角的一半即可得到结果【详解】D为ABC三边垂直平分线交点,点D为ABC的解析:128【解析】【分析】由点D为三边垂直平分线交点,得到点D为ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果【详解】D为ABC三边垂直平分线交点,点D为ABC的外心,D=2AA=64D=128故D的度数为128【点睛】此题考查线段垂直平分线的性质,解题关键在于根据同弧所对的圆周角等于圆心角的一半来解答1275【分析】根据平行线的性质和的度数得到,再利用平角的性质可得的度数【详解】解:如图:,故答案为:75【点睛】此题考查了平行线的性质,解题的关键是注意掌握两直线平解析:75【分析】根据平行线的性质和

17、的度数得到,再利用平角的性质可得的度数【详解】解:如图:,故答案为:75【点睛】此题考查了平行线的性质,解题的关键是注意掌握两直线平行,同位角相等定理的应用13145【分析】首先判定四边形ABCD是平行四边形,得到AC,ADBC,再根据折叠变换的性质和平行线的性质将角度转化求解【详解】解:ADBC,ABCD,四边形ABCD是平行解析:145【分析】首先判定四边形ABCD是平行四边形,得到AC,ADBC,再根据折叠变换的性质和平行线的性质将角度转化求解【详解】解:ADBC,ABCD,四边形ABCD是平行四边形,AC,根据翻转折叠的性质可知,AEFGEF,EFBEFK,ADBC,DEFEFB,AE

18、FEFC,GEFAEFEFC,DEFEFBEFK,GEFDEFEFCEFK,GEDCFK,C+CFK+CKF180,C+CFK145,A+GED145,故答案为145【点睛】本题主要考查平行线的性质;多边形内角与外角及翻折变换(折叠问题),熟练掌握平行线的性质;多边形内角与外角及翻折变换(折叠问题)是解题的关键14【分析】先根据题意求得、,发现规律即可求解【详解】解:a1=3,该数列为每4个数为一周期循环,a2020=故答案为:【点睛】此题主要考查规律的探索,解析:【分析】先根据题意求得、,发现规律即可求解【详解】解:a1=3,该数列为每4个数为一周期循环,a2020=故答案为:【点睛】此题主

19、要考查规律的探索,解题的关键是根据题意发现规律15(,)或(7,7).【分析】根据题意可得关于a的绝对值方程,解方程可得a的值,进一步即得答案.【详解】解:P(2a,2a+3)到两坐标轴的距离相等,.或,解得或,当时,P点解析:(,)或(7,7).【分析】根据题意可得关于a的绝对值方程,解方程可得a的值,进一步即得答案.【详解】解:P(2a,2a+3)到两坐标轴的距离相等,.或,解得或,当时,P点坐标为(,);当时,P点坐标为(7,7).故答案为(,)或(7,7).【点睛】本题考查了直角坐标系中点的坐标特征,根据题意列出方程是解题的关键.162023【分析】根据图形观察发现,第偶数次跳动至点的

20、坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2解析:2023【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2022的坐标,进而可求出点A2021与点A2022之间的距离【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),第2n次跳动至点的坐标是(n+1,n),

21、则第2022次跳动至点的坐标是(1012,1011),第2021次跳动至点的坐标是(-1011,1011)点A2021与点A2022的纵坐标相等,点A2021与点A2022之间的距离=1012-(-1011)=2023,故答案为:2023【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键三、解答题17(1)1 (2)【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,再加减即可;试题解析:(1)原式;(2)原式30+0.5+解析:(1)1 (2)【详解】试题分析:(1)先化简根式,再加减即可;(2)先化简根式,

22、再加减即可;试题解析:(1)原式;(2)原式30+0.5+18(1);(2)【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解【详解】解:(1)移项得,解析:(1);(2)【分析】(1)方程整理后,利用开平方定义即可求解,即将一个正数开平方后,得到互为相反数的两个解;(2)方程整理后,将一个数开立方后,只得到一个解【详解】解:(1)移项得,开方得,;(2)移项得,合并同类项得,开立方得,【点睛】此题考查了立方根,以及平方根,熟练掌握各自的性质是解题关键19(1)FDE,两直线平行,内错角相等; A,B

23、FD, 同位角相等,两直线平行;(2)证明见解析【分析】(1)根据两直线平行内错角相等和同位角相等两直线平行求解即可;(2)根据两直线平行解析:(1)FDE,两直线平行,内错角相等; A,BFD, 同位角相等,两直线平行;(2)证明见解析【分析】(1)根据两直线平行内错角相等和同位角相等两直线平行求解即可;(2)根据两直线平行同位角相等和内错角相等两直线平行求解即可【详解】(1)证明:DEBA(已知) BFDFDE(两直线平行,内错角相等)又 AFDEABFD,(等量代换)FDCA(同位角相等,两直线平行)故答案为:FDE,两直线平行,内错角相等; A,BFD, 同位角相等,两直线平行 (2)

24、证明:DEBA(已知),ADEC(两直线平行,同位角相等),又 AFDE(已知),FDEDEC(等量代换),FDCA;(内错角相等,两直线平行)【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解20(1)见解析;(2)见解析;(3),AD;(4)【分析】(1)根据平移的性质,按要求作图即可;(2)根据过点A画线段ADBC,AD=BC,即可;(3)由平移的性质可得,BC,从而可以解析:(1)见解析;(2)见解析;(3),AD;(4)【分析】(1)根据平移的性质,按要求作图即可;(2)根据过点A画线段ADBC,AD=BC,即可;(3)由平移的性质可得,BC,从而可

25、以得到,AD;(4)根据点到直线的距离垂线段最短,可知当BHCE时BH最短,由此利用三角形面积公式求解即可【详解】解:(1)如图所示,即为所求:(2)如图所示,即为所求:(3)平移的性质可得 ,BC,由AD=BC,ADBC,从而可以得到,AD;故答案为:,AD;(4)根据点到直线的距离垂线段最短,可知当BHCE时BH最短,如图所示:ADBC, ,点H是直线CE上一动点线段BH的最小值为故答案为:【点睛】本题主要考查了平移作图,点到直线的距离垂线段最短,三角形面积,解题的关键在于能够熟练掌握相关知识进行求解21(1)1;(2)1;(3)19【分析】(1)先求出的整数部分,即可求出结论;(2)先求

26、出和的整数部分,即可求出a和b的值,从而求出结论;(3)求出的小数部分即可求出y,从而求出x的值,代入解析:(1)1;(2)1;(3)19【分析】(1)先求出的整数部分,即可求出结论;(2)先求出和的整数部分,即可求出a和b的值,从而求出结论;(3)求出的小数部分即可求出y,从而求出x的值,代入求值即可【详解】解:(1)12的整数部分是1的小数部分是1;(2)12,23的整数部分是1,的整数部分是2的小数部分是1;a=1,b=2=1(3)的小数部分是1y=1x=8+(1)=9=19【点睛】本题主要考查了无理数大小的估算,根据估算求得无理数的整数部分和小数部分是解答本题的关键22(1) 长是1.

27、5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:解析:(1) 长是1.5m,宽是0.5m.;(2)不能.【解析】【分析】(1)设每块小长方形地砖的长为xm,宽为ym,列方程组求解即可;(2)把正方形的边长与大长方形的长比较即可.【详解】解:(1)设每块小长方形地砖的长为xm,宽为ym,由题意得:,解得:,长是1.5m,宽是0.5m.(2)正方形的面积为7平方米,正方形的边长是米,3,他不能剪出符合要求的桌布.【点睛】本题考查了二元一次方程组的应用,算术平方根的应用,找出等量

28、关系列出方程组是解(1)的关键,求出正方形的边长是解(2)的关键.23(1)49,(2)44,(3)OPQ=ORQ【分析】(1)根据OPA=QPB可求出OPA的度数;(2)由AOP=43,BQP=49可求出OPQ的度数,转化为(1)来解解析:(1)49,(2)44,(3)OPQ=ORQ【分析】(1)根据OPA=QPB可求出OPA的度数;(2)由AOP=43,BQP=49可求出OPQ的度数,转化为(1)来解决问题;(3)由(2)推理可知:OPQ=AOP+BQP,ORQ=DOR+RQC,从而OPQ=ORQ【详解】解:(1)OPA=QPB,OPQ=82,OPA=(180-OPQ)=(180-82)=

29、49,(2)作PCm,mn,mPCn,AOP=OPC=43,BQP=QPC=49,OPQ=OPC+QPC=43+49=92,OPA=(180-OPQ)=(180-92)44,(3)OPQ=ORQ理由如下:由(2)可知:OPQ=AOP+BQP,ORQ=DOR+RQC,入射光线与平面镜的夹角等于反射光线与平面镜的夹角,AOP=DOR,BQP=RQC,OPQ=ORQ【点睛】本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的24(1)60;(2)50;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形

30、内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先解析:(1)60;(2)50;(3)或【分析】(1)根据平行线的性质可得的度数,再根据角平分线的性质可得的度数,应用三角形内角和计算的度数,由已知条件,可计算出的度数;(2)根据题意画出图形,先根据可计算出的度数,由可计算出的度数,再根据平行线的性质和角平分线的性质,计算出的度数,即可得出结论;(3)根据题意可分两种情况,若点运动到上方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论;若点运动到下方,根据平行线的性质由可计算出的度数,再根据角平分线的性质和平行线的性质,计算出的度数,再,列出等量关系求解即可等处结论【详解】解:(1),平分,又,;(2)根据题意画图,如图1所示,又平分,;(3)如图2所示,平分,又,解得;如图3所示,平分,又,解得综上的度数为或【点睛】本题主要考查平行线的性质和角平分线的性质,两直线平行,同位角相等两直线平行,同旁内角互补两直线平行,内错角相等合理应用平行线的性质是解决本题的关键

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服