收藏 分销(赏)

七年级下册数学期中试卷(含答案)完整.doc

上传人:丰**** 文档编号:5135184 上传时间:2024-10-26 格式:DOC 页数:21 大小:680.54KB
下载 相关 举报
七年级下册数学期中试卷(含答案)完整.doc_第1页
第1页 / 共21页
七年级下册数学期中试卷(含答案)完整.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述
七年级下册数学期中试卷(含答案)完整 一、选择题 1.4的算术平方根是() A.2 B.4 C. D. 2.下列运动中,属于平移的是( ) A.冷水加热过程中,小气泡上升成为大气泡 B.急刹车时汽车在地面上的滑动 C.随手抛出的彩球运动 D.随风飘动的风筝在空中的运动 3.点在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限 4.有下列命题,①的算术平方根是2;②一个角的邻补角一定大于这个角;③在同一平面内,垂直于同一条直线的两直线平行;④平行于同一条直线的两条直线互相平行.其中假命题有( ) A.①② B.①③ C.②④ D.③④ 5.若的两边与的两边分别平行,且,那么的度数为( ) A. B. C.或 D.或 6.按如图所示的程序计算,若开始输入的x的值是64,则输出的y的值是( ) A. B. C.2 D.3 7.如图,已知直线,点为直线上一点,为射线上一点.若,,交于点,则的度数为( ) A.45° B.55° C.60° D.75° 8.在直角坐标系中,一个质点从出发沿图中路线依次经过,,,…按此规律一直运动下去,则( ) A.1009 B.1010 C.1011 D.1012 二、填空题 9.的算术平方根为_______; 10.已知点关于轴的对称点为,关于轴的对称点为,那么点的坐标是________. 11.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和38,则△EDF的面积为_____. 12.如图,AB∥DE,AD⊥AB,AE平分∠BAC交BC于点F,如果∠CAD=24°,则∠E=___°. 13.将一条长方形纸带按如图方式折叠,若,则的度数为________°. 14.当时,我们把称为x为“和1负倒数”.如:1的“和1负倒数”为;-3的“和1负倒数”为.若,是的“和1负倒数”,是的“和1负倒数”…依次类推,则=______;… = _____. 15.,则在第_____象限. 16.如图,在平面直角坐标系中,轴,轴,点、、、在轴上,,,,,,把一条长为2021个单位长度且无弹性的细线(线的粗细忽略不计)的一端固定在处,并按的规律紧绕在图形“凸”的边上,则细线的另一端所在位置的点的坐标________. 三、解答题 17.计算: (1) (2) 18.求下列各式中的值: (1); (2); (3). 19.按逻辑填写步骤和理由,将下面的证明过程补充完整. 如图,,点在直线上,点、在直线上,且,点在线段上,连接,且平分. 求证:. 证明:( ) ( ) (平角定义) 平分(已知) ( ) ( ) (已知) ( ) (等量代换) 20.如图,已知在平面直角坐标系中的位置如图所示. (1)写出三个顶点的坐标; (2)求出的面积; (3)在图中画出把先向左平移5个单位,再向上平移2个单位后所得的. 21.已知的平方根是的立方根是是的整数部分,求的算术平方根. 22.如图,用两个面积为的小正方形纸片剪拼成一个大的正方形. (1)大正方形的边长是________; (2)请你探究是否能将此大正方形纸片沿着边的方向裁出一个面积为的长方形纸片,使它的长宽之比为,若能,求出这个长方形纸片的长和宽,若不能,请说明理由. 23.已知,如图1,射线PE分别与直线AB,CD相交于E、F两点,∠PFD的平分线与直线AB相交于点M,射线PM交CD于点N,设∠PFM=α°,∠EMF=β°,且(40﹣2α)2+|β﹣20|=0 (1)α=  ,β=  ;直线AB与CD的位置关系是   ; (2)如图2,若点G、H分别在射线MA和线段MF上,且∠MGH=∠PNF,试找出∠FMN与∠GHF之间存在的数量关系,并证明你的结论; (3)若将图中的射线PM绕着端点P逆时针方向旋转(如图3),分别与AB、CD相交于点M1和点N1时,作∠PM1B的角平分线M1Q与射线FM相交于点Q,问在旋转的过程中的值是否改变?若不变,请求出其值;若变化,请说明理由. 24.操作示例:如图1,在△ABC中,AD为BC边上的中线,△ABD的面积记为S1,△ADC的面积记为S2.则S1=S2. 解决问题:在图2中,点D、E分别是边AB、BC的中点,若△BDE的面积为2,则四边形ADEC的面积为 . 拓展延伸: (1)如图3,在△ABC中,点D在边BC上,且BD=2CD,△ABD的面积记为S1,△ADC的面积记为S2.则S1与S2之间的数量关系为 . (2)如图4,在△ABC中,点D、E分别在边AB、AC上,连接BE、CD交于点O,且BO=2EO,CO=DO,若△BOC的面积为3,则四边形ADOE的面积为 . 【参考答案】 一、选择题 1.A 解析:A 【分析】 依据算术平方根的定义解答即可. 【详解】 4的算术平方根是2, 故选:A. 【点睛】 本题考查的是求一个数的算术平方根的问题,解题关键是明确算术平方根的定义. 2.B 【详解】 解:A、气泡在上升的过程中变大,不属于平移; B、急刹车时汽车在地面上的滑动属于平移; C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移; D、随风飘动的树叶在空中的运动, 解析:B 【详解】 解:A、气泡在上升的过程中变大,不属于平移; B、急刹车时汽车在地面上的滑动属于平移; C、随手抛出的彩球运动既发生了平移,也发生了旋转,不属于平移; D、随风飘动的树叶在空中的运动,既发生了平移,也发生了旋转. 故选B. 【点睛】 此题主要考查了平移,关键是掌握平移时图形中所有点移动的方向一致,并且移动的距离相等. 3.C 【分析】 根据平面直角坐标系象限的符合特点可直接进行排除选项. 【详解】 解:在平面直角坐标系中,第一象限的符合为“+、+”,第二象限的符合为“-、+”;第三象限的符合为“-、-”,第四象限的符合为“+、-”,由此可得点在第三象限; 故选C. 【点睛】 本题主要考查平面直角坐标系中象限的符合特点,熟练掌握平面直角坐标系中象限的符合特点是解题的关键. 4.A 【分析】 根据算术平方根的定义,邻补角的定义,平行线的判定逐一分析判断即可. 【详解】 ①,的算术平方根是,①是假命题; ②大于的角的的邻补角小于这个角,②是假命题; ③在同一平面内,垂直于同一条直线的两直线平行,正确,是真命题; ④平行于同一条直线的两条直线互相平行,正确,是真命题. 所以假命题有①②. 故选A. 【点睛】 本题考查了算术平方根的定义,邻补角的定义,平行线的判定等知识,掌握以上知识是解题的关键. 5.A 【分析】 根据当两角的两边分别平行时,两角的关系可能相等也可能互补,即可得出答案. 【详解】 解:当∠B的两边与∠A的两边如图一所示时,则∠B=∠A, 又∵∠B=∠A+20°, ∴∠A+20°=∠A, ∵此方程无解, ∴此种情况不符合题意,舍去; 当∠B的两边与∠A的两边如图二所示时,则∠A+∠B=180°; 又∵∠B=∠A+20°, ∴∠A+20°+∠A=180°, 解得:∠A=80°; 综上所述,的度数为80°, 故选:A. 【点睛】 本题考查了平行线的性质,本题的解题关键是明确题意,画出相应图形,然后分类讨论角度关系即可得出答案. 6.A 【分析】 根据计算程序图计算即可. 【详解】 解:∵当x=64时,,,2是有理数, ∴当x=2时,算术平方根为是无理数, ∴y=, 故选:A. 【点睛】 此题考查计算程序的应用,正确理解计算程序图的计算步骤,会正确计算数的算术平方根及立方根,能正确判断有理数及无理数是解题的关键. 7.C 【分析】 利用,及平行线的性质,得到,再借助角之间的比值,求出,从而得出的大小. 【详解】 解:, , , , ,, , , , , 故选:. 【点睛】 本题考查了平行线的性质的综合应用,涉及的知识点有:平行线的性质、邻补角、三角形的内角和等知识,体现了数学的转化思想、见比设元等思想. 8.B 【分析】 根据题意可得A(1,1),B(-1,2),C(2,3),D(-2,4),E(3,5),F(-3,6),则,,,,,,,,由此可知当n为偶数时;,,,,可得 ,,可以得到,由此求解即可. 解析:B 【分析】 根据题意可得A(1,1),B(-1,2),C(2,3),D(-2,4),E(3,5),F(-3,6),则,,,,,,,,由此可知当n为偶数时;,,,,可得 ,,可以得到,由此求解即可. 【详解】 解:由题意可知A(1,1),B(-1,2),C(2,3),D(-2,4),E(3,5),F(-3,6), ∴,,,,,,,,由此可知当n为偶数时 , ∴ ∵,,,,可得 ,, ∴可以得到, ∴, ∴, 故选B. 【点睛】 本题主要考查了点坐标规律的探索,解题的关键在于能够准确找到相应的规律进行求解. 二、填空题 9.【分析】 先求出的值,然后再化简求值即可. 【详解】 解:∵, ∴2的算术平方根是, ∴的算术平方根是. 故答案为. 【点睛】 本题考查了算术平方根的定义,灵活运用算术平方根的定义的定义求解是解答 解析: 【分析】 先求出的值,然后再化简求值即可. 【详解】 解:∵, ∴2的算术平方根是, ∴的算术平方根是. 故答案为. 【点睛】 本题考查了算术平方根的定义,灵活运用算术平方根的定义的定义求解是解答本题的关键,直接求解是本题的易错点. 10.【分析】 根据点坐标关于坐标轴的对称规律即可得. 【详解】 点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变 点关于轴 解析: 【分析】 根据点坐标关于坐标轴的对称规律即可得. 【详解】 点坐标关于坐标轴的对称规律:(1)关于x轴对称,横坐标不变、纵坐标变为相反数;(2)关于y轴对称,横坐标变为相反数,纵坐标不变 点关于轴的对称点为,则点P的纵坐标为1 点关于轴的对称点为,则点P的横坐标为2 则点P的坐标为 故答案为:. 【点睛】 本题考查了点坐标关于坐标轴的对称规律,掌握对称规律是解题关键. 11.6 【详解】 如图,过点D作DH⊥AC于点H, 又∵AD是△ABC的角平分线,DF⊥AB,垂足为F, ∴DF=DH,∠AFD=∠ADH=∠DHG=90°, 又∵AD=AD,DE=DG, ∴△ADF≌ 解析:6 【详解】 如图,过点D作DH⊥AC于点H, 又∵AD是△ABC的角平分线,DF⊥AB,垂足为F, ∴DF=DH,∠AFD=∠ADH=∠DHG=90°, 又∵AD=AD,DE=DG, ∴△ADF≌△ADH,△DEF≌△DGH, 设S△DEF=,则S△AED+=S△ADG-,即38+=50-,解得:=6. ∴△EDF的面积为6. 12.33 【分析】 由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解. 【详解】 解:∵AD⊥AB, ∴∠BAD=90°, ∵∠C 解析:33 【分析】 由题意易得∠BAD=90°,则有∠BAC=66°,然后根据角平分线的定义可得∠BAE=33°,进而根据平行线的性质可求解. 【详解】 解:∵AD⊥AB, ∴∠BAD=90°, ∵∠CAD=24°, ∴∠BAC=66°, ∵AE平分∠BAC, ∴∠BAE=∠CAE=33°, ∵AB∥DE, ∴∠E=∠BAE=33°, 故答案为33. 【点睛】 本题主要考查平行线的性质、角平分线的定义及垂线的定义,熟练掌握平行线的性质、角平分线的定义及垂线的定义是解题的关键. 13.36 【分析】 根据平行线的性质、折叠的性质即可解决. 【详解】 ∵AB∥CD,如图 ∴∠GEC=∠1=108゜ 由折叠的性质可得:∠2=∠FED ∵∠2+∠FED+∠GEC=180゜ ∴∠2= 解析:36 【分析】 根据平行线的性质、折叠的性质即可解决. 【详解】 ∵AB∥CD,如图 ∴∠GEC=∠1=108゜ 由折叠的性质可得:∠2=∠FED ∵∠2+∠FED+∠GEC=180゜ ∴∠2= 故答案为:36 【点睛】 本题考查了平行线的性质、折叠的性质、平角的概念,关键是掌握折叠的性质. 14.【分析】 根据“和1负倒数”的定义分别计算、、、…,可得到数字的变化规律:从开始每3个数为一周期循环,由此即可解答. 【详解】 解:由“和1负倒数”定义和可得: , , , …… 由此可得出从开 解析: 【分析】 根据“和1负倒数”的定义分别计算、、、…,可得到数字的变化规律:从开始每3个数为一周期循环,由此即可解答. 【详解】 解:由“和1负倒数”定义和可得: , , , …… 由此可得出从开始每3个数为一周期循环, ∵2021÷3=673…2, ∴,,又·.= =1, ∴… ==3, 故答案为:;3. 【点睛】 本题考查新定义的实数运算、数字型规律探究,理解新定义的运算法则,正确得出数字的变化规律是解答的关键. 15.二 【分析】 根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答. 【详解】 解:由题意得,a+2=0,b-6=0, 解得a=-2,b=6, 所以,点(-2,6)在第二象限; 故答 解析:二 【分析】 根据非负数的性质列方程求出a、b的值,再根据各象限内点的坐标特征解答. 【详解】 解:由题意得,a+2=0,b-6=0, 解得a=-2,b=6, 所以,点(-2,6)在第二象限; 故答案为:二 【点睛】 本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 16.【分析】 先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题. 【详解】 解:,,,,, ∴, “凸”形的周长为20, 又∵的余数为1, 细线另一端所在位置的点在的中点处,坐标为. 故 解析: 【分析】 先求出“凸”形的周长为20,得到的余数为1,由此即可解决问题. 【详解】 解:,,,,, ∴, “凸”形的周长为20, 又∵的余数为1, 细线另一端所在位置的点在的中点处,坐标为. 故答案为:. 【点睛】 本题考查规律型:点的坐标,解题的关键是理解题意,求出“凸”形的周长,属于中考常考题型. 三、解答题 17.(1)1.2;(2) 【解析】试题分析:(1)、根据算术平方根、立方根以及-1的奇数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据算术平方根、立方根以及绝对值的计算法则得出各式的值, 解析:(1)1.2;(2) 【解析】试题分析:(1)、根据算术平方根、立方根以及-1的奇数次幂的计算法则得出各式的值,然后进行求和得出答案;(2)、根据算术平方根、立方根以及绝对值的计算法则得出各式的值,然后进行求和得出答案. 试题解析:(1)原式 (2)原式 18.(1)0.2;(2);(3)5 【分析】 (1)直接利用立方根的性质计算得出答案; (2)直接将-3移项,合并再利用立方根的性质计算得出答案; (3)直接利用立方根的性质计算得出x-1的值,进而得出 解析:(1)0.2;(2);(3)5 【分析】 (1)直接利用立方根的性质计算得出答案; (2)直接将-3移项,合并再利用立方根的性质计算得出答案; (3)直接利用立方根的性质计算得出x-1的值,进而得出x的值. 【详解】 解:(1)x3=0.008, 则x=0.2; (2)x3-3= 则x3=3+ 故x3= 解得:x=; (3)(x-1)3=64 则x-1=4, 解得:x=5. 【点睛】 此题主要考查了立方根,正确把握立方根的定义是解题关键. 19.已知;垂直定义;;2;角平分线定义;等角的余角相等;;两直线平行,内错角相等 【分析】 根据题意和图形可以将题目中的证明过程补充完整,从而可以解答本题. 【详解】 证明:∵AB⊥AC(已知), ∴∠ 解析:已知;垂直定义;;2;角平分线定义;等角的余角相等;;两直线平行,内错角相等 【分析】 根据题意和图形可以将题目中的证明过程补充完整,从而可以解答本题. 【详解】 证明:∵AB⊥AC(已知), ∴∠BAC=90°(垂直的定义), ∴∠2+∠3=90°, ∵∠1+∠4+∠BAC=180°(平角定义), ∴∠1+∠4=180°-∠BAC=90°, ∵AC平分∠DAF(已知), ∴∠1=∠2(角平分线的定义), ∴∠3=∠4(等角的余角相等), ∵a∥b(已知), ∴∠4=∠5(两直线平行,内错角相等), ∴∠3=∠5(等量代换). 故答案为:已知;垂直定义;90;2;角平分线定义;等角的余角相等;5;两直线平行,内错角相等. 【点睛】 本题考查了垂直的定义、角平分线的定义、平行线的性质和余角的定义,解题的关键是要找准线和对应的角,不能弄混淆. 20.(1);(2);(3)图见解析. 【分析】 (1)根据点在平面直角坐标系中的位置即可得; (2)利用一个长方形的面积减去三个直角三角形的面积即可得; (3)根据平移作图的方法即可得. 【详解】 解: 解析:(1);(2);(3)图见解析. 【分析】 (1)根据点在平面直角坐标系中的位置即可得; (2)利用一个长方形的面积减去三个直角三角形的面积即可得; (3)根据平移作图的方法即可得. 【详解】 解:(1)由点在平面直角坐标系中的位置:; (2)的面积为; (3)如图所示,即为所求. 【点睛】 本题考查了点坐标、平移作图,熟练掌握平移作图的方法是解题关键. 21.【分析】 首先根据平方根与立方根的概念可得2a−1与a+3b−1的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a+2b+c,根据算术平方根的求法可得答案. 【详解】 解:根据题意, 解析: 【分析】 首先根据平方根与立方根的概念可得2a−1与a+3b−1的值,进而可得a、b的值;接着估计的大小,可得c的值;进而可得a+2b+c,根据算术平方根的求法可得答案. 【详解】 解:根据题意,可得2a−1=9, a+3b−1=-8; 解得:a=5,b=-4; 又∵6<<7, 可得c=6; ∴a+2b+c=3; ∴a+2b+c的算术平方根为. 【点睛】 此题主要考查了平方根、立方根、算术平方根的定义及无理数的估算能力,“夹逼法”是估算的一般方法,也是常用方法. 22.(1)4;(2)不能,理由见解析. 【分析】 (1)根据已知正方形的面积求出大正方形的边长即可; (2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再 解析:(1)4;(2)不能,理由见解析. 【分析】 (1)根据已知正方形的面积求出大正方形的边长即可; (2)先设未知数根据面积=14(cm2)列方程,求出长方形的边长,将长方形的长与正方形边长比较大小再判断即可. 【详解】 解:(1)两个正方形面积之和为:2×8=16(cm2), ∴拼成的大正方形的面积=16(cm2), ∴大正方形的边长是4cm; 故答案为:4; (2)设长方形纸片的长为2xcm,宽为xcm, 则2x•x=14, 解得:, 2x=2>4, ∴不存在长宽之比为且面积为的长方形纸片. 【点睛】 本题考查了算术平方根,能够根据题意列出算式是解此题的关键. 23.(1)20,20,;(2);(3)的值不变, 【分析】 (1)根据,即可计算和的值,再根据内错角相等可证; (2)先根据内错角相等证,再根据同旁内角互补和等量代换得出; (3)作的平分线交的延长线于 解析:(1)20,20,;(2);(3)的值不变, 【分析】 (1)根据,即可计算和的值,再根据内错角相等可证; (2)先根据内错角相等证,再根据同旁内角互补和等量代换得出; (3)作的平分线交的延长线于,先根据同位角相等证,得,设,,得出,即可得. 【详解】 解:(1), ,, , ,, , ; 故答案为:20、20,; (2); 理由:由(1)得, , , , , , , ; (3)的值不变,; 理由:如图3中,作的平分线交的延长线于, , , ,, , , , 设,, 则有:, 可得, , . 【点睛】 本题主要考查平行线的判定与性质,熟练掌握内错角相等证平行,平行线同旁内角互补等知识是解题的关键. 24.解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5 【解析】 试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论; 拓展延伸:(1) 解析:解决问题:6; 拓展延伸:(1)S1=2S2 (2)10.5 【解析】 试题分析:解决问题:连接AE,根据操作示例得到S△ADE=S△BDE,S△ABE=S△AEC,从而得到结论; 拓展延伸:(1)作△ABD的中线AE,则有BE=ED=DC,从而得到△ABE的面积=△AED的面积=△ADC的面积,由此即可得到结论; (2)连接AO.则可得到△BOD的面积=△BOC的面积,△AOC的面积=△AOD的面积,△EOC的面积=△BOC的面积的一半, △AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,求出a、b的值,即可得到结论. 试题解析:解:解决问题 连接AE.∵点D、E分别是边AB、BC的中点,∴S△ADE=S△BDE,S△ABE=S△AEC.∵S△BDE =2,∴S△ADE =2,∴S△ABE=S△AEC=4,∴四边形ADEC的面积=2+4=6. 拓展延伸: 解:(1)作△ABD的中线AE,则有BE=ED=DC,∴△ABE的面积=△AED的面积=△ADC的面积= S2,∴S1=2S2. (2)连接AO.∵CO=DO,∴△BOD的面积=△BOC的面积=3,△AOC的面积=△AOD的面积.∵BO=2EO,∴△EOC的面积=△BOC的面积的一半=1.5, △AOB的面积=2△AOE的面积.设△AOD的面积=a,△AOE的面积=b,则a+3=2b,a=b+1.5,解得:a=6,b=4.5,∴四边形ADOE的面积为=a+b=6+4.5=10.5.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服