资源描述
七年级数学下册 期末试卷检测题(Word版 含答案)
一、选择题
1.如图,下列各组角中是同位角的是( )
A.∠1和∠2 B.∠3和∠4 C.∠2和∠4 D.∠1和∠4
2.下列图形中,可以由其中一个图形通过平移得到的是( )
A. B. C. D.
3.若点在第二象限,则点在第( )象限
A.一 B.二 C.三 D.四
4.下列四个命题:①对顶角相等;②内错角相等;③平行于同一条直线的两条直线互相平行;④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等;⑤过一点有且只有一条直线与已知直线垂直.其中真命题的个数是( )
A.1个 B.2个 C.3个 D.4个
5.如图,如果AB∥EF,EF∥CD,下列各式正确的是( )
A.∠1+∠2−∠3=90° B.∠1−∠2+∠3=90° C.∠1+∠2+∠3=90° D.∠2+∠3−∠1=180°
6.下列结论正确的是( )
A.64的立方根是±4
B.﹣没有立方根
C.立方根等于本身的数是0
D.=﹣3
7.已知:如图,AB∥EF,CD⊥EF,∠BAC=30°,则∠ACD=( )
A.100° B.110° C.120° D.130°
8.如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,… 组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,则第2021秒时,点P的坐标是( )
A.(2020,0) B.(2021,-1) C.(2021,1) D.(2022,0)
二、填空题
9.已知非零实数a.b满足|2a-4|+|b+2|++4=2a,则2a+b=_______.
10.在平面直角坐标系中,已知点A的坐标为(﹣2,5),点Q与点A关于y轴对称,点P与点Q关于x轴对称,则点P的坐标是___.
11.如图,AD∥BC,BD为∠ABC的角平分线,DE、DF分别是∠ADB和∠ADC的角平分线,且∠BDF=α,则∠A与∠C的等量关系是________________(等式中含有α)
12.如图,,点M为CD上一点,MF平分∠CME.若∠1=57°,则∠EMD的大小为_____度.
13.如图①是长方形纸带,,将纸带沿折叠成图②,再沿折叠成图③,则图③中的的度数是________.
14.对于正数x规定,例如:,则f (2020)+f (2019)+……+f (2)+f (1)+=___________
15.若点P(2x,x-3)到两坐标轴的距离之和为5,则x的值为____________.
16.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断移动,每移动一个单位,得到点,,,,…,那么点的坐标为__________.
三、解答题
17.计算:
(1).
(2)﹣12+(﹣2)3× .
18.求下列各式中的x:
(1); (2); (3).
19.完成下面的证明:
已知:如图,,,.
求证:.
证明:(已知),
∵∠______(____________________).
∴,(已知),
∵__________.
即∠______
∴(______________________________).
20.如图,在平面直角坐标系中,DABC的顶点 C的坐标为(1,3).点A、B分别在格点上.
(1)直接写出A、B两点的坐标;
(2)若把DABC向上平移3个单位,再向右平移2个单位得DA¢B¢C¢,画出DA¢B¢C¢;
(3)若DABC内有一点 M(m,n),按照(2)的平移规律直接写出平移后点M的对应点 M¢的坐标.
21.已知:是的小数部分,是的小数部分.
(1)求的值;
(2)求的平方根.
二十二、解答题
22.数学活动课上,小新和小葵各自拿着不同的长方形纸片在做数学问题探究.
(1)小新经过测量和计算得到长方形纸片的长宽之比为3:2,面积为30,请求出该长方形纸片的长和宽;
(2)小葵在长方形内画出边长为a,b的两个正方形(如图所示),其中小正方形的一条边在大正方形的一条边上,她经过测量和计算得到长方形纸片的周长为50,阴影部分两个长方形的周长之和为30,由此她判断大正方形的面积为100,间小葵的判断正确吗?请说明理由.
二十三、解答题
23.如图1,已知直线m∥n,AB 是一个平面镜,光线从直线m上的点O射出,在平面镜AB上经点P反射后,到达直线n上的点Q.我们称OP为入射光线,PQ为反射光线,镜面反射有如下性质:入射光线与平面镜的夹角等于反射光线与平面镜的夹角,即∠OPA=∠QPB.
(1)如图1,若∠OPQ=82°,求∠OPA的度数;
(2)如图2,若∠AOP=43°,∠BQP=49°,求∠OPA的度数;
(3)如图3,再放置3块平面镜,其中两块平面镜在直线m和n上,另一块在两直线之间,四块平面镜构成四边形ABCD,光线从点O以适当的角度射出后,其传播路径为 O→P→Q→R→O→P→…试判断∠OPQ和∠ORQ的数量关系,并说明理由.
24.已知直线,M,N分别为直线,上的两点且,P为直线上的一个动点.类似于平面镜成像,点N关于镜面所成的镜像为点Q,此时.
(1)当点P在N右侧时:
①若镜像Q点刚好落在直线上(如图1),判断直线与直线的位置关系,并说明理由;
②若镜像Q点落在直线与之间(如图2),直接写出与之间的数量关系;
(2)若镜像,求的度数.
25.(1)如图1,∠BAD的平分线AE与∠BCD的平分线CE交于点E,AB∥CD,∠ADC=50°,∠ABC=40°,求∠AEC的度数;
(2)如图2,∠BAD的平分线AE与∠BCD的平分线CE交于点E,∠ADC=α°,∠ABC=β°,求∠AEC的度数;
(3)如图3,PQ⊥MN于点O,点A是平面内一点,AB、AC交MN于B、C两点,AD平分∠BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由.
26.在中,,,点在直线上运动(不与点、重合),点在射线上运动,且,设.
(1)如图①,当点在边上,且时,则__________,__________;
(2)如图②,当点运动到点的左侧时,其他条件不变,请猜想和的数量关系,并说明理由;
(3)当点运动到点的右侧时,其他条件不变,和还满足(2)中的数量关系吗?请在图③中画出图形,并给予证明.(画图痕迹用黑色签字笔加粗加黑)
【参考答案】
一、选择题
1.D
解析:D
【分析】
根据同位角的定义分析即可,两条直线被第三条直线所截,如果两个角分别在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角.
【详解】
A. ∠1和∠2是邻补角,不符合题意;
B. ∠3和∠4是同旁内角,不符合题意;
C. ∠2和∠4没有关系,不符合题意;
D. ∠1和∠4是同位角,符合题意;
故选D.
【点睛】
本题考查了同位角的定义,理解同位角的定义是解题的关键.
2.C
【分析】
根据平移的性质,结合图形对选项进行一一分析,选出正确答案.
【详解】
解:∵只有C的基本图案的角度,形状和大小没有变化,符合平移的性质,属于平移得到;
故选:C.
【点睛】
本题考查的
解析:C
【分析】
根据平移的性质,结合图形对选项进行一一分析,选出正确答案.
【详解】
解:∵只有C的基本图案的角度,形状和大小没有变化,符合平移的性质,属于平移得到;
故选:C.
【点睛】
本题考查的是利用平移设计图案,熟知图形平移后所得图形与原图形全等是解答此题的关键.
3.C
【分析】
应根据点P的坐标特征先判断出点Q的横纵坐标的符号,进而判断点Q所在的象限.
【详解】
解:∵点在第二象限,
∴1+a<0,1-b>0;
∴a<-1, b-1<0,
即点在第三象限.
故选:C.
【点睛】
解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.
4.B
【分析】
根据几何初步知识对命题逐个判断即可.
【详解】
解:①对顶角相等,为真命题;
②内错角相等,只有两直线平行时,内错角才相等,此为假命题;
③平行于同一条直线的两条直线互相平行,为真命题;
④如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或者互补,此为假命题;
⑤过直线外一点有且只有一条直线与已知直线垂直,为假命题;
①③命题正确.
故选:B.
【点睛】
本题主要考查了命题的判定,熟练掌握平行线、对顶角等几何初步知识是解答本题的关键.
5.D
【分析】
根据平行线的性质,即可得到∠3=∠COE,∠2+∠BOE=180°,进而得出∠2+∠3-∠1=180°.
【详解】
∵EF∥CD
∴∠3=∠COE
∴∠3−∠1=∠COE−∠1=∠BOE
∵AB∥EF
∴∠2+∠BOE=180°,即∠2+∠3−∠1=180°
故选:D.
【点睛】
本题考查了平行线的性质,两条直线平行:内错角相等;两直线平行:同旁内角互补.
6.D
【分析】
利用立方根的定义及求法分别判断后即可确定正确的选项.
【详解】
解:A、64的立方根是4,原说法错误,故这个选项不符合题意;
B、﹣的立方根为﹣,原说法错误,故这个选项不符合题意;
C、立方根等于本身的数是0和±1,原说法错误,故这个选项不符合题意;
D、=﹣3,原说法正确,故这个选项符合题意;
故选:D.
【点睛】
本题考查了立方根的应用,注意:一个正数有一个正的立方根、0的立方根是0,一个负数有一个负的立方根.
7.C
【分析】
如图,过点C作,利用平行线的性质得到,,则易求∠ACD的度数.
【详解】
解:过点C作,则,
,
,
,
,
,
故选:C.
【点睛】
本题考查了平行线的性质.该题通过作辅助线,将转化为(+90°)来求.
8.C
【分析】
根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.
【详解】
解:半径为1个单位长度的半圆的周长为×2π×1=π,
∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长
解析:C
【分析】
根据图象可得移动4次图象完成一个循环,从而可得出点P的坐标.
【详解】
解:半径为1个单位长度的半圆的周长为×2π×1=π,
∵点P从原点O出发,沿这条曲线向右运动,速度为每秒个单位长度,
∴点P每秒走个半圆,
∴当点P从原点O出发,沿这条曲线向右运动,运动时间为1秒时,点P的坐标为(1,1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为2秒时,点P的坐标为(2,0),
当点P从原点O出发,沿这条曲线向右运动,运动时间为3秒时,点P的坐标为(3,-1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为4秒时,点P的坐标为(4,0),
当点P从原点O出发,沿这条曲线向右运动,运动时间为5秒时,点P的坐标为(5,1),
当点P从原点O出发,沿这条曲线向右运动,运动时间为6秒时,点P的坐标为(6,0),
…,
∵2021÷4=505余1,
∴P的坐标是(2021,1),
故选:C.
【点睛】
此题考查了点的规律变化,解答本题的关键是仔细观察图象,得到点的变化规律,解决问题.
二、填空题
9.4
【分析】
首先根据算术平方根的被开方数≥0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十2|+=0.根据非负数的性质可分别求出a和b的值,即可求出2a+b的值.
【详解】
解:
解析:4
【分析】
首先根据算术平方根的被开方数≥0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十2|+=0.根据非负数的性质可分别求出a和b的值,即可求出2a+b的值.
【详解】
解:由题意可得a≥3,
∴2a-4>0,
已知等式整理得:|b+2|+=0,
∴a=3,b=-2,
∴2a+b=2×3-2=4.
故答案为4.
【点睛】
本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0,熟练掌握非负数的性质是解题的关键.
10.(2,﹣5).
【分析】
根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可
【详解】
∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,
∴点Q的坐标为(2,5),
∵点P与点Q关于x轴
解析:(2,﹣5).
【分析】
根据题意分析点P,先关于y轴对称,再求关于x轴对称的点即可
【详解】
∵点A的坐标为(﹣2,5),点Q与点A关于y轴对称,
∴点Q的坐标为(2,5),
∵点P与点Q关于x轴对称,
∴点P的坐标是(2,﹣5).
故答案为:(2,﹣5).
【点睛】
本题考查了平面直角坐标系的定义,轴对称,理解题意是解题的关键.
11.∠A=∠C+2α
【分析】
由角平分线定义得出∠ABC=2∠CBD,∠ADC=2∠ADF,又因AD∥BC得出∠A+∠ABC=180°,∠ADC+∠C=180°,∠CBD=∠ADB,等量代换得∠A=∠
解析:∠A=∠C+2α
【分析】
由角平分线定义得出∠ABC=2∠CBD,∠ADC=2∠ADF,又因AD∥BC得出∠A+∠ABC=180°,∠ADC+∠C=180°,∠CBD=∠ADB,等量代换得∠A=∠C+2α即可得到答案.
【详解】
解:如图所示:
∵BD为∠ABC的角平分线,
∴∠ABC=2∠CBD,
又∵AD∥BC,
∴∠A+∠ABC=180°,
∴∠A+2∠CBD=180°,
又∵DF是∠ADC的角平分线,
∴∠ADC=2∠ADF,
又∵∠ADF=∠ADB+α
∴∠ADC=2∠ADB+2α,
又∵∠ADC+∠C=180°,
∴2∠ADB+2α+∠C=180°,
∴∠A+2∠CBD=2∠ADB+2α+∠C
又∵∠CBD=∠ADB,
∴∠A=∠C+2α,
故答案为:∠A=∠C+2α.
【点睛】
本题考查了平行线的性质,解题需要熟练掌握角平分线的定义,平行线的性质和等式的性质,重点掌握平行线的性质.
12.【分析】
根据AB∥CD,求得∠CMF=∠1=57°,利用MF平分∠CME,求得∠CME=2∠CMF=114°,根据∠EMD=180°-∠CME求出结果.
【详解】
∵AB∥CD,
∴∠CMF=∠
解析:
【分析】
根据AB∥CD,求得∠CMF=∠1=57°,利用MF平分∠CME,求得∠CME=2∠CMF=114°,根据∠EMD=180°-∠CME求出结果.
【详解】
∵AB∥CD,
∴∠CMF=∠1=57°,
∵MF平分∠CME,
∴∠CME=2∠CMF=114°,
∴∠EMD=180°-∠CME=66°,
故答案为:66.
【点睛】
此题考查平行线的性质,角平分线的有关计算,理解图形中角之间的和差关系是解题的关键.
13.180°-3α
【分析】
由AD∥BC,利用平行线的性质可得出∠BFE和∠CFE的度数,再结合∠CFG=∠CFE-∠BFE及∠CFE=∠CFG-∠BFE,即可求出∠CFE的度数.
【详解】
解:∵A
解析:180°-3α
【分析】
由AD∥BC,利用平行线的性质可得出∠BFE和∠CFE的度数,再结合∠CFG=∠CFE-∠BFE及∠CFE=∠CFG-∠BFE,即可求出∠CFE的度数.
【详解】
解:∵AD∥BC,
∴∠BFE=∠DEF=α,∠CFE=180°-∠DEF=180°-α,
∴图②中∠CFG=∠CFE-∠BFE=180°-α-α=180°-2α,
∴图③中∠CFE=∠CFG-∠BFE=180°-2α-α=180°-3α.
故答案为:180°-3α.
【点睛】
本题考查了平行线的性质,牢记“两直线平行,内错角相等”及“两直线平行,同旁内角互补”是解题的关键.
14.5
【分析】
由已知可求,则可求.
【详解】
解:,
,
,
,
故答案为:2019.5
【点睛】
本题考查代数值求值,根据所给条件,探索出是解题的关键.
解析:5
【分析】
由已知可求,则可求.
【详解】
解:,
,
,
,
故答案为:2019.5
【点睛】
本题考查代数值求值,根据所给条件,探索出是解题的关键.
15.或
【详解】
【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.
【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=,
当0≤x<3时,2x≥0,x-3
解析:或
【详解】
【分析】分x<0,0≤x<3,x≥3三种情况分别讨论即可得.
【详解】当x<0时,2x<0,x-3<0,由题意则有-2x-(x-3)=5,解得:x=,
当0≤x<3时,2x≥0,x-3<0,由题意则有2x-(x-3)=5,解得:x=2,
当x≥3时,2x>0,x-3≥0,由题意则有2x+x-3=5,解得:x=<3(不合题意,舍去),
综上,x的值为2或,
故答案为2或.
【点睛】本题考查了坐标与图形的性质,根据x的取值范围分情况进行讨论是解题的关键.
16.【分析】
由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An的一般规律,从而可求得结果.
【详解】
∵,,,
∴根据点的平移规律,可分别得:,,,,,,,,…,,,
解析:
【分析】
由题意可知,每隔四次移动重复一次,继续得出A5,A6,A7,A8,…,归纳出点An的一般规律,从而可求得结果.
【详解】
∵,,,
∴根据点的平移规律,可分别得:,,,,,,,,…,,,,
∵2021=505×4+1
∴的横坐标为2×505=1010,纵坐标为1
即
故答案为:
【点睛】
本题考查了平面直角坐标系中点的坐标的规律问题,点平移的坐标特征,体现了由特殊到一般的数学思想,关键是由前面若干点的的坐标寻找出规律.
三、解答题
17.(1)0;(2)-3.
【分析】
(1)原式利用平方根、立方根定义计算即可得到结果;
(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果.
【详解】
解:(1)原式=3-6-
解析:(1)0;(2)-3.
【分析】
(1)原式利用平方根、立方根定义计算即可得到结果;
(2)原式利用乘方的意义,平方根、立方根定义,以及乘法法则计算即可得到结果.
【详解】
解:(1)原式=3-6-(-3)=3-6+3=0;
(2)原式= -1+(-8)× -(-3)×(- )=-1-1-1=-3.
故答案为(1)0;(2)-3.
【点睛】
本题考查实数的运算,涉及立方根、平方根、乘方运算,掌握实数的运算顺序是关键.
18.(1);(2)1;(3)-1.
【分析】
(1)根据立方根的定义解方程即可;
(2)根据立方根的定义解方程即可;
(3)根据立方根的定义解方程即可.
【详解】
解:(1),
∴ ,
∴,
∴;
(2
解析:(1);(2)1;(3)-1.
【分析】
(1)根据立方根的定义解方程即可;
(2)根据立方根的定义解方程即可;
(3)根据立方根的定义解方程即可.
【详解】
解:(1),
∴ ,
∴,
∴;
(2)
∴
∴
∴;
(3),
∴,
∴,
∴.
【点睛】
本题考查了利用立方根的含义解方程,熟知立方根的定义是解决问题的关键.
19.BAC,垂直的定义,180°,BAD,同旁内角互补,两直线平行.
【分析】
根据垂直的定义和已知证明∠BAD,即,由同旁内角互补,两直线平行即可得出结论.
【详解】
证明:∵(已知),
∴∠BAC(
解析:BAC,垂直的定义,180°,BAD,同旁内角互补,两直线平行.
【分析】
根据垂直的定义和已知证明∠BAD,即,由同旁内角互补,两直线平行即可得出结论.
【详解】
证明:∵(已知),
∴∠BAC(垂直的定义).
∵,(已知),
∴180°
即∠BAD
∴(同旁内角互补,两直线平行)
故答案为:BAC,垂直的定义,180°,BAD,同旁内角互补,两直线平行.
【点睛】
本题主要考查了垂直定义和平行线的判定,证明∠BAD是解题关键.
20.(1),;(2)见解析;(3).
【分析】
(1)根据原点的位置确定点的坐标即可;
(2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可;
(3)将M(m,n)向上平移3个单位,再向右平移
解析:(1),;(2)见解析;(3).
【分析】
(1)根据原点的位置确定点的坐标即可;
(2)将三点向上平移3个单位,再向右平移2个单位得到,连接即可;
(3)将M(m,n)向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3即可得到的坐标.
【详解】
(1)根据原点的位置确定点的坐标,
则,;
(2)将三点向上平移3个单位,再向右平移2个单位得到,
,
,
在图中描出点,连接,DA¢B¢C¢即为所求.
(3)将M(m,n)向上平移3个单位,再向右平移2个单位,即横坐标+2,纵坐标+3
.
【点睛】
本题考查了平面直角坐标系的定义,平移的作图,根据平移的方向和距离确定点的坐标是解题的关键.
21.(1),;(2)±3.
【分析】
(1)首先得出1<<2,进而得出a,b的值;
(2)根据平方根即可解答.
【详解】
(1)∵1<<2
∴10<<11,7<<8
∴的整数部分为10,的整数部分为7,
解析:(1),;(2)±3.
【分析】
(1)首先得出1<<2,进而得出a,b的值;
(2)根据平方根即可解答.
【详解】
(1)∵1<<2
∴10<<11,7<<8
∴的整数部分为10,的整数部分为7,
,
,;
(2)原式
的平方根为:.
【点睛】
此题主要考查了估算无理数的大小,正确得出a,b的值是解题关键.
二十二、解答题
22.(1)长为,宽为;(2)正确,理由见解析
【分析】
(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;
(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程
解析:(1)长为,宽为;(2)正确,理由见解析
【分析】
(1)设长为3x,宽为2x,根据长方形的面积为30列方程,解方程即可;
(2)根据长方形纸片的周长为50,阴影部分两个长方形的周长之和为30列方程组,解方程组求出a即可得到大正方形的面积.
【详解】
解:(1)设长为3x,宽为2x,
则:3x•2x=30,
∴x=(负值舍去),
∴3x=,2x=,
答:这个长方形纸片的长为,宽为;
(2)正确.理由如下:
根据题意得:,
解得:,
∴大正方形的面积为102=100.
【点睛】
本题考查了算术平方根,二元一次方程组,解二元一次方程组的基本思路是消元,把二元方程转化为一元方程是解题的关键.
二十三、解答题
23.(1)49°,(2)44°,(3)∠OPQ=∠ORQ
【分析】
(1)根据∠OPA=∠QPB.可求出∠OPA的度数;
(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解
解析:(1)49°,(2)44°,(3)∠OPQ=∠ORQ
【分析】
(1)根据∠OPA=∠QPB.可求出∠OPA的度数;
(2)由∠AOP=43°,∠BQP=49°可求出∠OPQ的度数,转化为(1)来解决问题;
(3)由(2)推理可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,从而∠OPQ=∠ORQ.
【详解】
解:(1)∵∠OPA=∠QPB,∠OPQ=82°,
∴∠OPA=(180°-∠OPQ)×=(180°-82°)×=49°,
(2)作PC∥m,
∵m∥n,
∴m∥PC∥n,
∴∠AOP=∠OPC=43°,
∠BQP=∠QPC=49°,
∴∠OPQ=∠OPC+∠QPC=43°+49°=92°,
∴∠OPA=(180°-∠OPQ)×=(180°-92°)×44°,
(3)∠OPQ=∠ORQ.
理由如下:由(2)可知:∠OPQ=∠AOP+∠BQP,∠ORQ=∠DOR+∠RQC,
∵入射光线与平面镜的夹角等于反射光线与平面镜的夹角,
∴∠AOP=∠DOR,∠BQP=∠RQC,
∴∠OPQ=∠ORQ.
【点睛】
本题主要考查了平行线的性质和入射角等于反射角的规定,解决本题的关键是注意问题的设置环环相扣、前为后用的设置目的.
24.(1)①,证明见解析,②,(2)或.
【分析】
(1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q作QF∥CD,根据平行线的性质证即可;
(2)过点Q作QF∥CD,根据点P的位置不同,
解析:(1)①,证明见解析,②,(2)或.
【分析】
(1) ①根据和镜像证出,即可判断直线与直线的位置关系,②过点Q作QF∥CD,根据平行线的性质证即可;
(2)过点Q作QF∥CD,根据点P的位置不同,分类讨论,依据平行线的性质求解即可.
【详解】
(1)①,
证明:∵,
∴,
∵,
∴,
∴;
②过点Q作QF∥CD,
∵,
∴,
∴,,
∴,
∵,
∴;
(2)如图,当点P在N右侧时,过点Q作QF∥CD,
同(1)得,,
∴,,
∵,
∴,
∴,
∵,
∴,
∴,
如图,当点P在N左侧时,过点Q作QF∥CD,同(1)得,,
同理可得,,
∵,
∴,
∴,
∵,
∴,
∴;
综上,的度数为或.
【点睛】
本题考查了平行线的性质与判定,解题关键是恰当的作辅助线,熟练利用平行线的性质推导角之间的关系.
25.(1)∠E=45°;(2)∠E=;(3)不变化,
【分析】
(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠
解析:(1)∠E=45°;(2)∠E=;(3)不变化,
【分析】
(1)由三角形内角和定理,可得∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,由角平分线的性质,可得∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,则可得∠E= (∠D+∠B),继而求得答案;
(2)首先延长BC交AD于点F,由三角形外角的性质,可得∠BCD=∠B+∠BAD+∠D,又由角平分线的性质,即可求得答案.
(3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案.
【详解】
解:(1)∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,
∵∠D+∠ECD=∠E+∠EAD,∠B+∠EAB=∠E+∠ECB,
∴∠D+∠ECD+∠B+∠EAB=∠E+∠EAD+∠E+∠ECB
∴∠D+∠B=2∠E,
∴∠E=(∠D+∠B),
∵∠ADC=50°,∠ABC=40°,
∴∠AEC= ×(50°+40°)=45°;
(2)延长BC交AD于点F,
∵∠BFD=∠B+∠BAD,
∴∠BCD=∠BFD+∠D=∠B+∠BAD+∠D,
∵CE平分∠BCD,AE平分∠BAD
∴∠ECD=∠ECB=∠BCD,∠EAD=∠EAB=∠BAD,
∵∠E+∠ECB=∠B+∠EAB,
∴∠E=∠B+∠EAB-∠ECB=∠B+∠BAE-∠BCD
=∠B+∠BAE-(∠B+∠BAD+∠D)
= (∠B-∠D),
∠ADC=α°,∠ABC=β°,
即∠AEC=
(3)的值不发生变化,
理由如下:
如图,记与交于,与交于,
①,
②,
①-②得:
AD平分∠BAC,
【点睛】
此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义.此题难度较大,注意掌握整体思想与数形结合思想的应用.
26.(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析
【分析】
(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC
解析:(1)60,30;(2)∠BAD=2∠CDE,证明见解析;(3)成立,∠BAD=2∠CDE,证明见解析
【分析】
(1)如图①,将∠BAC=100°,∠DAC=40°代入∠BAD=∠BAC-∠DAC,求出∠BAD.在△ABC中利用三角形内角和定理求出∠ABC=∠ACB=40°,根据三角形外角的性质得出∠ADC=∠ABC+∠BAD=100°,在△ADE中利用三角形内角和定理求出∠ADE=∠AED=70°,那么∠CDE=∠ADC-∠ADE=30°;
(2)如图②,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACB-∠AED=,再由∠BAD=∠DAC-∠BAC得到∠BAD=n-100°,从而得出结论∠BAD=2∠CDE;
(3)如图③,在△ABC和△ADE中利用三角形内角和定理求出∠ABC=∠ACB=40°,∠ADE=∠AED=.根据三角形外角的性质得出∠CDE=∠ACD-∠AED=,再由∠BAD=∠BAC+∠DAC得到∠BAD=100°+n,从而得出结论∠BAD=2∠CDE.
【详解】
解:(1)∠BAD=∠BAC-∠DAC=100°-40°=60°.
∵在△ABC中,∠BAC=100°,∠ABC=∠ACB,
∴∠ABC=∠ACB=40°,
∴∠ADC=∠ABC+∠BAD=40°+60°=100°.
∵∠DAC=40°,∠ADE=∠AED,
∴∠ADE=∠AED=70°,
∴∠CDE=∠ADC-∠ADE=100°-70°=30°.
故答案为60,30.
(2)∠BAD=2∠CDE,理由如下:
如图②,在△ABC中,∠BAC=100°,
∴∠ABC=∠ACB=40°.
在△ADE中,∠DAC=n,
∴∠ADE=∠AED=,
∵∠ACB=∠CDE+∠AED,
∴∠CDE=∠ACB-∠AED=40°-=,
∵∠BAC=100°,∠DAC=n,
∴∠BAD=n-100°,
∴∠BAD=2∠CDE.
(3)成立,∠BAD=2∠CDE,理由如下:
如图③,在△ABC中,∠BAC=100°,
∴∠ABC=∠ACB=40°,
∴∠ACD=140°.
在△ADE中,∠DAC=n,
∴∠ADE=∠AED=,
∵∠ACD=∠CDE+∠AED,
∴∠CDE=∠ACD-∠AED=140°-=,
∵∠BAC=100°,∠DAC=n,
∴∠BAD=100°+n,
∴∠BAD=2∠CDE.
【点睛】
本题考查了三角形内角和定理,三角形外角的性质,从图形中得出相关角度之间的关系是解题的关键.
展开阅读全文