收藏 分销(赏)

人教版七年级下册数学-期末试卷试卷(word版含答案).doc

上传人:天**** 文档编号:4881435 上传时间:2024-10-17 格式:DOC 页数:26 大小:1.19MB
下载 相关 举报
人教版七年级下册数学-期末试卷试卷(word版含答案).doc_第1页
第1页 / 共26页
人教版七年级下册数学-期末试卷试卷(word版含答案).doc_第2页
第2页 / 共26页
人教版七年级下册数学-期末试卷试卷(word版含答案).doc_第3页
第3页 / 共26页
人教版七年级下册数学-期末试卷试卷(word版含答案).doc_第4页
第4页 / 共26页
人教版七年级下册数学-期末试卷试卷(word版含答案).doc_第5页
第5页 / 共26页
点击查看更多>>
资源描述

1、人教版七年级下册数学 期末试卷试卷(word版含答案)一、选择题1如图,下列各组角中是同位角的是()A1和2B3和4C2和4D1和42在下面的四幅图案中,能通过图案(1)平移得到的是( )ABCD3在平面直角坐标系中有四个点,其中在第一象限的点是( )ABCD4下列命题:(1)无理数是无限小数;(2)过一点有且只有一条直线与已知直线平行;(3)过一点有且只有一条直线与已知直线垂直;(4)平方根等于它本身的数是0和1,其中是假命题的个数有( )A1个B2个C3个D4个5把一块直尺与一块含的直角三角板如图放置,若,则的度数为( )ABCD1246下列说法:两个无理数的和可能是有理数:任意一个有理数

2、都可以用数轴上的点表示;是三次二项式;立方根是本身的数有0和1;其中正确的是( )ABCD7如图,已知直线,点为直线上一点,为射线上一点若,交于点,则的度数为( ) A45B55C60D758如图,在平面直角坐标系中,点A从原点O出发,按AA1A2A3A4A5依次不断移动,每次移动1个单位长度,则A2021的坐标为()A(673,1)B(673,1)C(674,1)D(674,1)二、填空题9的算术平方根为_10小明从镜子里看到对面电子钟的像如图所示,那么实际时间是_.11已知点A(3a+5,a3)在二、四象限的角平分线上,则a=_12如图,直线,相交于点E,若,则等于_13如图,在中,点D是

3、的中点,点E在上,将沿折叠,若点B的落点在射线上,则与所夹锐角的度数是_14已知a,b为两个连续的整数,且,则的平方根为_15已知点A在x轴上方,y轴左侧,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是_16如图,在平面直角坐标系上有点A(1,0),第一次点A跳动至点A1(1,1),第二次点A1跳动至点A2(2,1),第三次点A2跳动至点A3(2,2),第四次点A3跳动至点A4(3,2),依此规律跳动下去,则点A2021与点A2022之间的距离是_三、解答题17计算(每小题4分)(1) (2)(3) (4)+|2 | + ( -1 )2017 18求下列各式中的的值:(1);(2)19补

4、全下列推理过程:如图,已知EF/AD,12,BAC70,求AGD解:EF/AD2 ( )又12( )13( )AB/ ( )BAC+ 180( )BAC70AGD 20在平面坐标系中描出下列各点且标该点字母:(1)点,;(2)点在轴上,位于原点右侧,距离原点2个单位长度;(3)点在轴下方,轴左侧,距离每条坐标轴都是3个单位长度21已知某正数的两个不同的平方根是3a14和a+2;b+11的立方根为3;c是的整数部分;(1)求a+b+c的值;(2)求3ab+c的平方根二十二、解答题22已知足球场的形状是一个长方形,而国际标准球场的长度和宽度(单位:米)的取值范围分别是,若某球场的宽与长的比是1:1

5、.5,面积为7350平方米,请判断该球场是否符合国际标准球场的长宽标准,并说明理由二十三、解答题23已知AB/CD(1)如图1,E为AB,CD之间一点,连接BE,DE,得到BED求证:BEDB+D;(2)如图,连接AD,BC,BF平分ABC,DF平分ADC,且BF,DF所在的直线交于点F如图2,当点B在点A的左侧时,若ABC50,ADC60,求BFD的度数如图3,当点B在点A的右侧时,设ABC,ADC,请你求出BFD的度数(用含有,的式子表示)24问题情境(1)如图1,已知,求的度数佩佩同学的思路:过点作,进而,由平行线的性质来求,求得_问题迁移(2)图2图3均是由一块三角板和一把直尺拼成的图

6、形,三角板的两直角边与直尺的两边重合,与相交于点,有一动点在边上运动,连接,记,如图2,当点在,两点之间运动时,请直接写出与,之间的数量关系;如图3,当点在,两点之间运动时,与,之间有何数量关系?请判断并说明理由;拓展延伸(3)当点在,两点之间运动时,若,的角平分线,相交于点,请直接写出与,之间的数量关系25(1)如图1,BAD的平分线AE与BCD的平分线CE交于点E,ABCD,ADC=50,ABC=40,求AEC的度数;(2)如图2,BAD的平分线AE与BCD的平分线CE交于点E,ADC=,ABC=,求AEC的度数;(3)如图3,PQMN于点O,点A是平面内一点,AB、AC交MN于B、C两点

7、,AD平分BAC交PQ于点D,请问的值是否发生变化?若不变,求出其值;若改变,请说明理由26如果三角形的两个内角与满足,那么我们称这样的三角形是“准互余三角形”(1)如图1,在中,是的角平分线,求证:是“准互余三角形”;(2)关于“准互余三角形”,有下列说法:在中,若,则是“准互余三角形”;若是“准互余三角形”,则;“准互余三角形”一定是钝角三角形其中正确的结论是_(填写所有正确说法的序号);(3)如图2,为直线上两点,点在直线外,且若是直线上一点,且是“准互余三角形”,请直接写出的度数【参考答案】一、选择题1D解析:D【分析】根据同位角的定义分析即可,两条直线被第三条直线所截,如果两个角分别

8、在两条直线的同侧,且在第三条直线的同旁,那么这两个角叫做同位角【详解】A. 1和2是邻补角,不符合题意;B. 3和4是同旁内角,不符合题意;C. 2和4没有关系,不符合题意;D. 1和4是同位角,符合题意;故选D【点睛】本题考查了同位角的定义,理解同位角的定义是解题的关键2C【分析】平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可【详解】解:A、对应点的连线相交,不能通过平移得到,不符合题意;B、对应点的连线相交,不能通过平移得到,不符合题解析:C【分析】平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可【详解】解:A、对应点的连线相交,不能通过平移得到,不符合题

9、意;B、对应点的连线相交,不能通过平移得到,不符合题意;C、可通过平移得到,符合题意;D、对应点的连线相交,不能通过平移得到,不符合题意;故选:C【点睛】本题考查了平移变换,解题的关键是熟练掌握平移变换的性质,属于中考常考题型3A【分析】根据各象限内点的坐标特征解答即可【详解】解:在第一象限;在第二象限;在第三象限;在第四象限;故选:A【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限4C【分析】根据无理数的定义,平行线公理,垂线的性质,平方根的定义逐项判断即可【详解】解:(1)应该是无理数是无

10、限不循环小数,是无限小数,故(1)是真命题;(2)应该是过直线外一点,有且只有一条直线与已知直线平行,故(2)是假命题;(3)应该是同一平面内,过一点有且只有一条直线与已知直线垂直,故(3)是假命题;(4)1的平方根 ,故(4)是假命题;所以假命题的个数有3个,故选:C【点睛】本题主要考查了无理数的定义,平行线公理,垂线的性质,平方根的定义,熟练掌握相关知识点是解题的关键5D【分析】根据角的和差可先计算出AEF,再根据两直线平行同旁内角互补即可得出2的度数【详解】解:由题意可知AD/BC,FEG=90,1=34,FEG=90,AEF=90-1=56,AD/BC,2=180-AEF=124,故选

11、:D【点睛】本题考查平行线的性质熟练掌握两直线平行,同旁内角互补并能正确识图是解题关键6A【分析】根据无理数的运算、数轴的定义、多项式的定义、立方根的运算逐个判断即可【详解】两个无理数的和可能是有理数,说法正确如:和是无理数,0是有理数有理数属于实数,实数与数轴上的点是一一对应关系,则任意一个有理数都可以用数轴上的点表示,说法正确是二次二项式,说法错误立方根是本身的数有0和,说法错误综上,说法正确的是故选:A【点睛】本题考查了无理数的运算、数轴的定义、多项式的定义、立方根的运算,熟记各运算法则和定义是解题关键7C【分析】利用,及平行线的性质,得到,再借助角之间的比值,求出,从而得出的大小【详解

12、】解:,故选:【点睛】本题考查了平行线的性质的综合应用,涉及的知识点有:平行线的性质、邻补角、三角形的内角和等知识,体现了数学的转化思想、见比设元等思想8C【分析】根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(1,1),A5(2,1),A6(2,0),A7解析:C【分析】根据图象可得移动6次完成一个循环,从而可得出点A2021的坐标【详解】解:A1(0,1),A2(1,1),A3(1,0),A4(1,1),A5(2,1),A6(2,0),A7(2,1),点坐标运动规律可以看作每移动6次一个循环,每个循环向右移动2

13、个单位,则202163365,所以,前336次循环运动点共向右运动3362672个单位,且在x轴上,再运动5次即向右移动2个单位,向下移动一个单位,则A2021的坐标是(674,1)故选:C【点睛】本题考查了平面直角坐标系点的规律,找到规律是解题的关键二、填空题94【分析】先利用平方的意义求出值,再利用算术平方根的概念求解即可.【详解】=16,16的算术平方根是4故答案为4.【点睛】本题考查算术平方根的定义,难度低,属于基础题,注意算术平方根与解析:4【分析】先利用平方的意义求出值,再利用算术平方根的概念求解即可.【详解】=16,16的算术平方根是4故答案为4.【点睛】本题考查算术平方根的定义

14、,难度低,属于基础题,注意算术平方根与平方根的区别.1021:05.【分析】利用镜面对称的性质求解镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称【详解】解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所解析:21:05.【分析】利用镜面对称的性质求解镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称【详解】解:根据镜面对称的性质,题中所显示的时刻与21:05成轴对称,所以此时实际时刻为21:05故答案为21:05【点睛】本题考查镜面反射的原理与性质解决此类题应认真观察,注意技巧11【详解】点A(3a+5,a-3)在二、四象限的角平分

15、线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,3a+5+a-3=0,a=.故答案是:.解析:【详解】点A(3a+5,a-3)在二、四象限的角平分线上,且二、四象限的角平分线上的点的横坐标与纵坐标之和为0,3a+5+a-3=0,a=.故答案是:.1280.【分析】先根据补角的定义求出BEC的度数,再由平行线的性质即可得出结论【详解】解:AEC=100,BEC=180-100=80DFAB,D=BE解析:80.【分析】先根据补角的定义求出BEC的度数,再由平行线的性质即可得出结论【详解】解:AEC=100,BEC=180-100=80DFAB,D=BEC=80故答案为:80.【点睛】

16、本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等13【分析】根据折叠可得三角形全等,根据全等三角形的性质以及中点的性质可得, ,由等腰三角形性质以及三角形外角定理求得度数,在中根据内角和即可求得与所夹锐角的度数【详解】如下图,连接DE,与解析:【分析】根据折叠可得三角形全等,根据全等三角形的性质以及中点的性质可得, ,由等腰三角形性质以及三角形外角定理求得度数,在中根据内角和即可求得与所夹锐角的度数【详解】如下图,连接DE,与相交于点O,将 BDE 沿 DE 折叠,,又D为BC的中点,,即与所夹锐角的度数是故答案为:【点睛】本题考察了轴对称的性质、全等三角形的性质、中点的性质、

17、三角形的外角以及内角和定理,综合运用以上性质定理是解题的关键143【分析】分别算出a,b计算即可;【详解】a,b为两个连续的整数,且,的平方根为3;故答案是:3【点睛】本题主要考查了无理数的估算和求一个数的平解析:3【分析】分别算出a,b计算即可;【详解】a,b为两个连续的整数,且,的平方根为3;故答案是:3【点睛】本题主要考查了无理数的估算和求一个数的平方根,准确计算是解题的关键15(4,3) 【分析】到x轴的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值【详解】解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数所以点A的坐解析:(4,3) 【分析】到x轴

18、的距离表示点的纵坐标的绝对值;到y轴的距离表示点的横坐标的绝对值【详解】解:根据题意可得点在第二象限,第二象限中的点横坐标为负数,纵坐标为正数所以点A的坐标为(4,3)故答案为:(4,3) 【点睛】本题考查点的坐标,利用数形结合思想解题是关键162023【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵坐标相同,可分别求出点A2021与点A2解析:2023【分析】根据图形观察发现,第偶数次跳动至点的坐标,横坐标是次数的一半加上1,纵坐标是次数的一半,奇数次跳动与该偶数次跳动的横坐标的相反数加上1,纵

19、坐标相同,可分别求出点A2021与点A2022的坐标,进而可求出点A2021与点A2022之间的距离【详解】解:观察发现,第2次跳动至点的坐标是(2,1),第4次跳动至点的坐标是(3,2),第6次跳动至点的坐标是(4,3),第8次跳动至点的坐标是(5,4),第2n次跳动至点的坐标是(n+1,n),则第2022次跳动至点的坐标是(1012,1011),第2021次跳动至点的坐标是(-1011,1011)点A2021与点A2022的纵坐标相等,点A2021与点A2022之间的距离=1012-(-1011)=2023,故答案为:2023【点睛】本题考查了坐标与图形的性质,以及图形的变化问题,结合图形

20、得到偶数次跳动的点的横坐标与纵坐标的变化情况是解题的关键三、解答题17(1)0;(2);(3)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;(3)先算绝对值、立方根解析:(1)0;(2);(3)1;(4)3.【分析】(1)先算根号和平方,再根据实数的加减运算计算即可得出答案;(2)先去绝对值,再根据实数的加减运算法则计算即可得出答案;(3)先算绝对值、立方根和乘方,再根据实数的加减运算法则计算即可得出答案;(4)先算根号、绝对值和乘方,再根据实数的加减运算法则计算即可得出答案.【详解】解:(1)原式

21、=-3+4-3=-2 (2)原式=(3)原式=2+(-2)+1=1 (4)原式=2+2-1=3【点睛】本题考查的是实数的运算,难度不大,需要熟练掌握实数的加减运算法则.18(1);(2)【分析】(1)先将原式变形为形式,再利用平方根的定义开平方求出答案;(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案【详解】解:(1),解析:(1);(2)【分析】(1)先将原式变形为形式,再利用平方根的定义开平方求出答案;(2)把先看作一个整体,将原式变形为形式,再利用立方根的定义开立方求出答案【详解】解:(1),;(2),解得:【点睛】此题主要考查了平方根以及立方根的定义,正确把握

22、相关定义解方程是解题关键193;两直线平行,同位角相等;已知;等量代换;DG;内错角相等,两直线平行;AGD;两直线平行,同旁内角互补;110【分析】根据平行线的性质得出23,求出13,根据平行线的判定得解析:3;两直线平行,同位角相等;已知;等量代换;DG;内错角相等,两直线平行;AGD;两直线平行,同旁内角互补;110【分析】根据平行线的性质得出23,求出13,根据平行线的判定得出AB/DG,根据平行线的性质推出BAC+AGD180,代入求出即可求得AGD【详解】解:EF/AD,23(两直线平行,同位角相等),又12(已知),13(等量代换),AB/DG,(内错角相等,两直线平行)BAC+

23、AGD180,(两直线平行,同旁内角互补)BAC70,AGD110故答案为:3,两直线平行,同位角相等,已知,等量代换,DG,内错角相等,两直线平行,AGD,两直线平行,同旁内角互补;110【点睛】本题考查了平行线的性质和判定的应用,能正确根据平行线的性质和判定定理进行推理是解此题的关键20(1)见解析;(2)见解析;(3)见解析【分析】(1)直接在平面直角坐标系内描出各点即可;(2)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可;(3)根据题意确定点 的坐标,然后解析:(1)见解析;(2)见解析;(3)见解析【分析】(1)直接在平面直角坐标系内描出各点即可;(2)根据题意确定点

24、的坐标,然后在平面直角坐标系内描出各点即可;(3)根据题意确定点 的坐标,然后在平面直角坐标系内描出各点即可【详解】解:(1)如图 , (2)点在轴上,位于原点右侧,距离原点2个单位长度,点 ;(3)点在轴下方,轴左侧,距离每条坐标轴都是3个单位长度,点 【点睛】本题主要考查了平面直角坐标系内点的坐标,正确把握点的坐标的性质是解题的关键21(1)-33;(2)【分析】(1)由平方根的性质知3a-14和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据可得c的值;(2)分别将a,b,c的值代入3a-b+c,可解析:(1)-33;(2)【分析】(1)由平方根的性质知3a-14

25、和a+2互为相反数,可列式,解之可得a=3,根据立方根定义可得b的值,根据可得c的值;(2)分别将a,b,c的值代入3a-b+c,可解答【详解】解:(1)某正数的两个平方根分别是3a-14和a+2,(3a-14)+(a+2)=0,a=3,又b+11的立方根为-3,b+11=(-3)3=-27,b=-38,又,又c是的整数部分,c=2;a+b+c=3+(-38)+2=-33;(2)当a=3,b=-38,c=2时,3a-b+c=33-(-38)+2=49,3a-b+c的平方根是7【点睛】本题主要考查了立方根、平方根及无理数的估算,解题的关键是熟练掌握平方根和立方根的定义二十二、解答题22符合,理由

26、见解析【分析】根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案【详解】解:符合,理由如下:设宽为b米,则长为1.5b米,由题意得,1.5bb解析:符合,理由见解析【分析】根据宽与长的比是1:1.5,面积为7350平方米,列方程求出长和宽,比较得出答案【详解】解:符合,理由如下:设宽为b米,则长为1.5b米,由题意得,1.5bb=7350,b=70,或b=-70(舍去),即宽为70米,长为1.570=105米,100105110,647075,符合国际标准球场的长宽标准【点睛】本题考查算术平方根的意义,列出方程求出长和宽是得出正确答案的前提二十三、解答题23(1)

27、见解析;(2)55;(3)【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)如图2,过点作,当点在点的左侧时,根据,根据平行线的性质及角平分线的定义即可求的度数;如图解析:(1)见解析;(2)55;(3)【分析】(1)根据平行线的判定定理与性质定理解答即可;(2)如图2,过点作,当点在点的左侧时,根据,根据平行线的性质及角平分线的定义即可求的度数;如图3,过点作,当点在点的右侧时,根据平行线的性质及角平分线的定义即可求出的度数【详解】解:(1)如图1,过点作,则有,;(2)如图2,过点作,有,即,平分,平分,答:的度数为;如图3,过点作,有,即,平分,平分,答:的度数为【点睛】本题考

28、查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质24(1);(2),理由见解析;(3)【分析】(1)过点作,则,由平行线的性质可得的度数;(2)过点作的平行线,依据平行线的性质可得与,之间的数量关系;过作,依据平行线的性质可得,即解析:(1);(2),理由见解析;(3)【分析】(1)过点作,则,由平行线的性质可得的度数;(2)过点作的平行线,依据平行线的性质可得与,之间的数量关系;过作,依据平行线的性质可得,即可得到;(3)过和分别作的平行线,依据平行线的性质以及角平分线的定义,即可得到与,之间的数量关系为【详解】解:(1)如图1,过点作,则,由平行线的性质可得,又,故答案为

29、:;(2)如图2,与,之间的数量关系为;过点P作PMFD,则PMFDCG,PMFD,1=,PMCG,2=,1+2=+,即:,如图,与,之间的数量关系为;理由:过作,;(3)如图,由可知,N=3+4,EN平分DEP,AN平分PAC,3=,4=,与,之间的数量关系为【点睛】本题主要考查了平行线的性质,解决问题的关键是过拐点作平行线,利用平行线的性质得出结论25(1)E=45;(2)E=;(3)不变化,【分析】(1)由三角形内角和定理,可得D+ECD=E+EAD,B+EAB=E+ECB,由角平分线的性质,可得ECD=ECB=解析:(1)E=45;(2)E=;(3)不变化,【分析】(1)由三角形内角和

30、定理,可得D+ECD=E+EAD,B+EAB=E+ECB,由角平分线的性质,可得ECD=ECB=BCD,EAD=EAB=BAD,则可得E= (D+B),继而求得答案;(2)首先延长BC交AD于点F,由三角形外角的性质,可得BCD=B+BAD+D,又由角平分线的性质,即可求得答案(3)由三角形内角和定理,可得,利用角平分线的性质与三角形的外角的性质可得答案【详解】解:(1)CE平分BCD,AE平分BAD ECD=ECB=BCD,EAD=EAB=BAD, D+ECD=E+EAD,B+EAB=E+ECB, D+ECD+B+EAB=E+EAD+E+ECB D+B=2E, E=(D+B), ADC=50

31、,ABC=40, AEC= (50+40)=45;(2)延长BC交AD于点F, BFD=B+BAD, BCD=BFD+D=B+BAD+D, CE平分BCD,AE平分BAD ECD=ECB=BCD,EAD=EAB=BAD, E+ECB=B+EAB, E=B+EABECB=B+BAEBCD=B+BAE(B+BAD+D)= (BD), ADC=,ABC=, 即AEC=(3)的值不发生变化,理由如下:如图,记与交于,与交于, , 得: AD平分BAC, 【点睛】此题考查了三角形内角和定理、三角形外角的性质以及角平分线的定义此题难度较大,注意掌握整体思想与数形结合思想的应用26(1)见解析;(2);(3

32、)APB的度数是10或20或40或110【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角解析:(1)见解析;(2);(3)APB的度数是10或20或40或110【分析】(1)由和是的角平分线,证明即可;(2)根据“准互余三角形”的定义逐个判断即可;(3)根据“准互余三角形”的定义,分类讨论:2A+ABC=90;A+2APB=90;2APB+ABC=90;2A+APB=90,由三角形内角和定理和外角的性质结合“准互余三角形”的定义,即可求出答案【详解】(1)证明:在中,BD是的角平分线,是“准互余三角形”;(2),是“准互余三角形”,

33、故正确;, ,不是“准互余三角形”,故错误;设三角形的三个内角分别为,且,三角形是“准互余三角形”,或,“准互余三角形”一定是钝角三角形,故正确;综上所述,正确,故答案为:;(3)APB的度数是10或20或40或110;如图,当2A+ABC=90时,ABP是“准直角三角形”,ABC=50,A=20,APB=110;如图,当A+2APB=90时,ABP是“准直角三角形”,ABC=50,A+APB=50,APB=40;如图,当2APB+ABC=90时,ABP是“准直角三角形”,ABC=50,APB=20;如图,当2A+APB=90时,ABP是“准直角三角形”,ABC=50,A+APB=50,所以A=40,所以APB=10;综上,APB的度数是10或20或40或110时,是“准互余三角形”【点睛】本题是三角形综合题,考查了三角形内角和定理,三角形的外角的性质,解题关键是理解题意,根据三角形内角和定理和三角形的外角的性质,结合新定义进行求解

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服