1、(完整版)人教版七年级数学下册期中试卷及答案doc人教一、选择题1的平方根为()ABCD2把“笑脸”进行平移,能得到的图形是( )ABCD3在平面直角坐标系中,点A(1,2021)在( )A第一象限B第二象限C第三象限D第四象限4下列说法中,错误的个数为( )两条不相交的直线叫做平行线;过一点有且只有一条直线与已知直线平行;在同一平面内不平行的两条线段一定相交;两条直线与第三条直线相交,那么这两条直线也相交A1个B2个C3个D4个5如图所示,三角板如图放置,其中,若,则的度数是( )ABCD6按如图所示的程序计算,若开始输入的x的值是64,则输出的y的值是( )ABC2D37如图,将一张长方形
2、纸片沿折叠使顶点,分别落在点,处,交于点,若,则( )ABCD8如图,动点P从点出发,沿所示方向运动,每当碰到长方形OABC的边时反弹,反弹后的路径与长方形的边的夹角为45,第1次碰到长方形边上的点的坐标为第2021次碰到长方形边上的坐标为( )ABCD二、填空题9计算_10若过点的直线与轴平行,则点关于轴的对称点的坐标是_11如图,点D是ABC三边垂直平分线的交点,若A64,则D_12如图,设,那么,的关系式_13将长方形纸带沿EF折叠(如图1)交BF于点G,再将四边形EDCF沿BF折叠,得到四边形,EF与交于点O(如图2),最后将四边形沿直线AE折叠(如图3),使得A、E、Q、H四点在同一
3、条直线上,且恰好落在BF上若在折叠的过程中,且,则_14已知a,b为两个连续的整数,且,则的平方根为_15若点P(2-m,m+1)在x轴上,则P点坐标为_16在平面直角坐标系中,已知点A(4,0),B(0,3),对AOB连续作图所示的旋转变换,依次得到三角形(1),(2),(3),(4),那么第(2013)个三角形的直角顶点坐标是_三、解答题17计算:(1)(2)18求下列各式中x的值(1)81x2 =16 (2)19如图已知12,CD,求证:AF(1)请把下面证明过程中序号对应的空白内容补充完整证明:12(已知)又1DMN( )2DMN(等量代换)DBEC( )DBCC180( )CD(已知
4、),DBC( )180(等量代换)DFAC( )AF( )(2)在(1)的基础上,小明进一步探究得到DBCDEC,请帮他写出推理过程20在由边长为1个单位长度的小正方形组成的网格中建立如图所示平面直角坐标系,原点O及ABC的顶点都在格点上(1)将 ABC先向下平移2个单位长度,再向右平移5个单位长度得到 A1B1C1,画出 A1B1C1(2)求 A1B1C1的面积21已知(1)求实数的值;(2)若的整数部分为,小数部分为求的值;已知,其中是一个整数,且,求的值22如图,这是由8个同样大小的立方体组成的魔方,体积为64(1)求出这个魔方的棱长;(2)图中阴影部分是一个正方形ABCD,求出阴影部分
5、的边长23已知ABCD,ABE与CDE的角分线相交于点F(1)如图1,若BM、DM分别是ABF和CDF的角平分线,且BED100,求M的度数;(2)如图2,若ABMABF,CDMCDF,BED,求M的度数;(3)若ABMABF,CDMCDF,请直接写出M与BED之间的数量关系24如图,已知是直线间的一点,于点交于点(1)求的度数;(2)如图2,射线从出发,以每秒的速度绕P点按逆时针方向旋转,当垂直时,立刻按原速返回至后停止运动:射线从出发,以每秒的速度绕E点按逆时针方向旋转至后停止运动,若射线,射线同时开始运动,设运动间为t秒当时,求的度数;当时,求t的值【参考答案】一、选择题1B解析:B【分
6、析】根据平方根的定义,如果一个数的平方等于a,则叫做这个数的平方根.【详解】解:因为22=4,(-2)2=4,所以4的平方根是,故选B.【点睛】本题主要考查平方根的定义,解决本题的关键是要熟练掌握平方根的定义.2D【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断【详解】解:观察图形可知图形进行平移,能得到图形D故选:D【点睛】本题考查了图形的平移,图形的平移只改解析:D【分析】根据平移不改变图形的形状和大小,对应点的连线相等且互相平行即可判断【详解】解:观察图形可知图形进行平移,能得到图形D故选:D【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形
7、的形状和大小3D【分析】根据各象限内点的坐标特征解答【详解】解:点A(1,-2021),A点横坐标是正数,纵坐标是负数,A点在第四象限故选:D【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)4D【分析】根据平行线的定义,平行线公理,同一平面内,直线的位置关系,逐一判断各个小题,即可得到答案【详解】在同一平面内,两条不相交的直线叫做平行线,故本小题错误,过直线外一点有且只有一条直线与已知直线平行,故本小题错误,在同一平面内不平行的两条直线一定相交;故本小题
8、错误,两条直线与第三条直线相交,那么这两条直线不一定相交,故本小题错误综上所述:错误的个数为4个故选D【点睛】本题主要考查平行线的定义,平行线公理,掌握平行线的定义,平行线公理是解题的关键5B【分析】作BDl1,根据平行线的性质得1=ABD=40,CBD=2,利用角的和差即可求解【详解】解:作BDl1,如图所示:BDl1,1=40,1=ABD=40,又l1l2,BDl2,CBD=2,又CBA=CBD+ABD=90,CBD=50,2=50故选:B【点睛】本题考查平行线的性质,角的和差等相关知识,重点掌握平行线的性质,难点是作辅线构建平行线6A【分析】根据计算程序图计算即可【详解】解:当x=64时
9、,2是有理数,当x=2时,算术平方根为是无理数,y=,故选:A【点睛】此题考查计算程序的应用,正确理解计算程序图的计算步骤,会正确计算数的算术平方根及立方根,能正确判断有理数及无理数是解题的关键7B【分析】根据两直线平行,内错角相等求出,再根据平角的定义求出,然后根据折叠的性质可得,进而即可得解【详解】解:在矩形纸片中,折叠,故选:B【点睛】本题考查了平行线的性质以及折叠的性质,根据两直线平行,内错角相等求出是解题的关键,另外,根据折叠前后的两个角相等也很重要8A【分析】该题属于找规律题型,只要把运动周期找出来即可解决【详解】由反弹线前后对称规律,得出第16次碰到长方形的边的点的坐标依次为:(
10、0,3)(1,4)(5,0)(8,3)(7,4)(3解析:A【分析】该题属于找规律题型,只要把运动周期找出来即可解决【详解】由反弹线前后对称规律,得出第16次碰到长方形的边的点的坐标依次为:(0,3)(1,4)(5,0)(8,3)(7,4)(3,0)由此可以得出运动周期为6次一循环,202163665,第2021次碰到长方形的边的点的坐标为(7,4),故选:A【点睛】本题主要考查了规律性,图形的变化,解题关键是明确反弹前后特征,发现点的变化周期,利用变化周期循环规律解答二、填空题911【分析】直接利用算术平方根的定义以及有理数的乘方运算法则分别化简得出答案【详解】解:原式=2+9=11故答案为
11、:11【点睛】此题主要考查了算术平方根以及有理数的乘方运算,正解析:11【分析】直接利用算术平方根的定义以及有理数的乘方运算法则分别化简得出答案【详解】解:原式=2+9=11故答案为:11【点睛】此题主要考查了算术平方根以及有理数的乘方运算,正确化简各数是解题关键10【分析】根据MN与x轴平行可以求得M点坐标,进一步可以求得点M关于y轴的对称点的坐标【详解】解:MN与x轴平行,两点纵坐标相同,a=-5,即M为(-3,-5)点M关于y轴的对解析:【分析】根据MN与x轴平行可以求得M点坐标,进一步可以求得点M关于y轴的对称点的坐标【详解】解:MN与x轴平行,两点纵坐标相同,a=-5,即M为(-3,
12、-5)点M关于y轴的对称点的坐标为:(3,-5)故答案为(3,-5) 【点睛】本题考查图形及图形变化的坐标表示,熟练掌握各种图形及图形变化的坐标特征是解题关键11128【解析】【分析】由点D为三边垂直平分线交点,得到点D为ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果【详解】D为ABC三边垂直平分线交点,点D为ABC的解析:128【解析】【分析】由点D为三边垂直平分线交点,得到点D为ABC的外心,根据同弧所对的圆周角等于圆心角的一半即可得到结果【详解】D为ABC三边垂直平分线交点,点D为ABC的外心,D=2AA=64D=128故D的度数为128【点睛】此题考查线段垂直平分线的性
13、质,解题关键在于根据同弧所对的圆周角等于圆心角的一半来解答12【分析】过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解;【详解】如图,过作,过作,故答案为:【点睛】本题考查了平解析:【分析】过作,过作,根据平行线的性质可知,然后根据平行线的性质即可求解;【详解】如图,过作,过作,故答案为:【点睛】本题考查了平行线的性质,两直线平行同位角相等,两直线平行内错角相等,正确理解平行线的性质是解题的关键;1332【分析】连接EQ,根据A、E、Q、H在同一直线上得到,根据得到,从而求得,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ,A、E、Q、H在同一直线上解析:32【分析】
14、连接EQ,根据A、E、Q、H在同一直线上得到,根据得到,从而求得,再根据题意求解即可得到答案.【详解】解:如图所示,连接EQ,A、E、Q、H在同一直线上,=90=180-90-26=64由折叠的性质可知:=32故答案为:32.【点睛】本题主要考查了平行线的性质,折叠的性质,解题的关键在于能够熟练掌握相关知识进行求解.143【分析】分别算出a,b计算即可;【详解】a,b为两个连续的整数,且,的平方根为3;故答案是:3【点睛】本题主要考查了无理数的估算和求一个数的平解析:3【分析】分别算出a,b计算即可;【详解】a,b为两个连续的整数,且,的平方根为3;故答案是:3【点睛】本题主要考查了无理数的估
15、算和求一个数的平方根,准确计算是解题的关键15(3,0)【分析】根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标【详解】点P(2-m,m+1)在x轴上,m+1=0,解得:m=-1,2-m=3,P点坐标解析:(3,0)【分析】根据x轴上的点的坐标纵坐标为0列方程可求出m的值,即可得出点P坐标【详解】点P(2-m,m+1)在x轴上,m+1=0,解得:m=-1,2-m=3,P点坐标为(3,0),故答案为:(3,0)【点睛】本题考查了点的坐标,熟记x轴上的点的纵坐标等于0是解题的关键16(8052,0)【分析】观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据
16、商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可【详解解析:(8052,0)【分析】观察图形不难发现,每3个三角形为一个循环组依次循环,用2013除以3,根据商和余数的情况确定出第(2013)个三角形的直角顶点到原点O的距离,然后写出坐标即可【详解】解:点A(4,0),B(0,3),OA4,OB3,AB5,第(3)个三角形的直角顶点的坐标是;观察图形不难发现,每3个三角形为一个循环组依次循环,一次循环横坐标增加12,20133671第(2013)个三角形是第671组的第三个直角三角形,其直角顶点与第671组的第三个直角三角形顶点重合,第(2013)个三角形的
17、直角顶点的坐标是即故答案为:【点睛】本题考查了坐标与图形变化-旋转,勾股定理的应用,观察图形,发现每3个三角形为一个循环组依次循环是解题的关键三、解答题17(1)-5;(2)【解析】【分析】(1)根据绝对值、乘方的意义和立方根的定义进行计算即可;(2)先根据平方根和立方根的定义化简各数,进而即可得出答案.【详解】(1)原式=;(2)原式=解析:(1)-5;(2)【解析】【分析】(1)根据绝对值、乘方的意义和立方根的定义进行计算即可;(2)先根据平方根和立方根的定义化简各数,进而即可得出答案.【详解】(1)原式=;(2)原式= -6+2+1+=.故答案为:(1)-5;(2) .【点睛】本题考查实
18、数的运算,解题的关键是熟练掌握平方根和立方根的定义.18(1);(2)【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用立方根的定义开立方即可求出解【详解】解:(1)方程变形得:,解得:;(2)开立方得:,解得:解析:(1);(2)【分析】(1)方程变形后,利用平方根定义开方即可求出解;(2)方程利用立方根的定义开立方即可求出解【详解】解:(1)方程变形得:,解得:;(2)开立方得:,解得:【点睛】本题考查了立方根,以及平方根,解题的关键是熟练掌握各自的求解方法19(1)见解析;(2)见解析【分析】(1)由对顶角相等及等量代换得到2=DMN,由此判定DBEC,由平行线的性质
19、及等量代换得出DBC+D=180即可判定DFAC,再根据平行线的性质即解析:(1)见解析;(2)见解析【分析】(1)由对顶角相等及等量代换得到2=DMN,由此判定DBEC,由平行线的性质及等量代换得出DBC+D=180即可判定DFAC,再根据平行线的性质即可得解;(2)由平行线的性质及等量代换即可得解【详解】解:(1)证明:1=2(已知),又1=DMN(对顶角相等),2=DMN(等量代换),DBEC(同位角相等,两直线平行 ),DBC+C=180( 两直线平行,同旁内角互补),C=D(已知),DBC+(D)=180(等量代换),DFAC( 同旁内角互补,两直线平行),A=F(两直线平行,内错角
20、相等 )(2)DBEC,DBC+C=180,DEC+D=180,C=D,DBC=DEC【点睛】此题考查了平行线的判定与性质,熟练掌握平行线的判定定理与性质定理是解题的关键20(1)见解析;(2)【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)依据割补法进行计算,即可得到三角形ABC的面积【详解】解:(1)如图所示,三角形A1B1C1即为所求解析:(1)见解析;(2)【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)依据割补法进行计算,即可得到三角形ABC的面积【详解】解:(1)如图所示,三角形A1B1C1即为所求;(2)如图所示,A1B1C1的面积=【点睛】本
21、题考查了根据平移变换作图,解答本题的关键是根据网格结构作出对应点的位置,然后顺次连接21(1);(2);【分析】(1)根据分式的值为0,分子为0且分母不能为0,可得和,再依据“0+0”型可求得a和b的值;(2)根据(1)中b的值,可得的整数部分和小数部分,将x和y的值代入解析:(1);(2);【分析】(1)根据分式的值为0,分子为0且分母不能为0,可得和,再依据“0+0”型可求得a和b的值;(2)根据(1)中b的值,可得的整数部分和小数部分,将x和y的值代入即可求值;估算的大小,再根据是一个整数,且,可得k和m的值,由此可得的值【详解】解:(1),且,且,即;(2),即的整数部分为4,小数部分
22、为,;,又,是一个整数,且,【点睛】本题考查分式为0的条件,算术平方根的整数部分和小数部分,不等式的性质,绝对值和算术平方根的非负性(1)中掌握分式的值为0,分子为0且分母不为0是解题关键;(2)中理解一个数的整数部分+小数部分=这个数是解题关键22(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案【详解】解:(1)设正方体的棱长为,则,所以,即正方体的棱长为4解析:(1)棱长为4;(2)边长为:(或)【分析】(1)由立方体的体积为棱长的立方可以得到答案;(2)用勾股定理直接计算得到答案【详解】解:(1)设正方体的棱长为,
23、则,所以,即正方体的棱长为4(2)因为正方体的棱长为4,所以AB【点睛】本题考查的是立方根与算术平方根的理解与计算,由实际的情境去理解问题本身就是求一个数的立方根与算术平方根是关键23(1)65;(2);(3)2nM+BED=360【分析】(1)首先作EGAB,FHAB,连结MF,利用平行线的性质可得ABE+CDE=260,再利用角平分线的定义得到ABF+解析:(1)65;(2);(3)2nM+BED=360【分析】(1)首先作EGAB,FHAB,连结MF,利用平行线的性质可得ABE+CDE=260,再利用角平分线的定义得到ABF+CDF=130,从而得到BFD的度数,再根据角平分线的定义和三
24、角形外角的性质可求M的度数;(2)先由已知得到ABE=6ABM,CDE=6CDM,由(1)得ABE+CDE=360-BED,M=ABM+CDM,等量代换即可求解;(3)由(2)的方法可得到2nM+BED=360【详解】解:(1)如图1,作,连结,和的角平分线相交于,、分别是和的角平分线,;(2)如图1,与两个角的角平分线相交于点,;(3)由(2)结论可得,则【点睛】本题主要考查了平行线的性质和四边形的内角和,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补的性质24(1);(2)或;秒或或秒【分析】(1)通过延长作辅助线,根据平行线的性质,得到,再根据外角的性质可计算得到结果;(2)
25、当时,分两种情况,当在和之间,当在和之间,由,计算出的运动时间解析:(1);(2)或;秒或或秒【分析】(1)通过延长作辅助线,根据平行线的性质,得到,再根据外角的性质可计算得到结果;(2)当时,分两种情况,当在和之间,当在和之间,由,计算出的运动时间,根据运动时间可计算出,由已知可计算出的度数;根据题意可知,当时,分三种情况,射线由逆时针转动,根据题意可知,再平行线的性质可得,再根据三角形外角和定理可列等量关系,求解即可得出结论;射线垂直时,再顺时针向运动时,根据题意可知,可计算射线的转动度数,再根据转动可列等量关系,即可求出答案;射线垂直时,再顺时针向运动时,根据题意可知,根据(1)中结论,可计算出与代数式,再根据平行线的性质,可列等量关系,求解可得出结论【详解】解:(1)延长与相交于点,如图1,;(2)如图2,射线运动的时间(秒,射线旋转的角度,又,;如图3所示,射线运动的时间(秒,射线旋转的角度,又,;的度数为或;当由运动如图4时,与相交于点,根据题意可知,经过秒,又,解得(秒;当运动到,再由运动到如图5时,与相交于点,根据题意可知,经过秒,运动的度数可得,解得;当由运动如图6时,根据题意可知,经过秒,又,解得(秒),当的值为秒或或秒时,【点睛】本题主要考查平行线性质,合理添加辅助线和根据题意画出相应的图形时解决本题的关键