资源描述
2020-2021备战中考数学二次函数(大题培优)附答案
一、二次函数
1.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).
(1)求这个二次函数的表达式;
(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.
①求线段PM的最大值;
②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.
【答案】(1)二次函数的表达式y=x2﹣2x﹣3;(2)①PM最大=;②P(2,﹣3)或(3-,2﹣4).
【解析】
【分析】
(1)根据待定系数法,可得答案;
(2)①根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;②根据等腰三角形的定义,可得方程,根据解方程,可得答案.
【详解】
(1)将A,B,C代入函数解析式,
得,解得,
这个二次函数的表达式y=x2﹣2x﹣3;
(2)设BC的解析式为y=kx+b,
将B,C的坐标代入函数解析式,得
,解得,
BC的解析式为y=x﹣3,
设M(n,n﹣3),P(n,n2﹣2n﹣3),
PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,
当n=时,PM最大=;
②当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,
解得n1=0(不符合题意,舍),n2=2,
n2﹣2n﹣3=-3,
P(2,-3);
当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,
解得n1=0(不符合题意,舍),n2=3+(不符合题意,舍),n3=3-,
n2﹣2n﹣3=2-4,
P(3-,2-4);
综上所述:P(2,﹣3)或(3-,2﹣4).
【点睛】
本题考查了二次函数的综合题,涉及到待定系数法、二次函数的最值、等腰三角形等知识,综合性较强,解题的关键是认真分析,弄清解题的思路有方法.
2.如图,在平面直角坐标系中有一直角三角形AOB,O为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线y=ax2+bx+c经过点A、B、C.
(1)求抛物线的解析式;
(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴l与x轴交于一点E,连接PE,交CD于F,求以C、E、F为顶点三角形与△COD相似时点P的坐标.
【答案】(1)抛物线的解析式为y=﹣x2﹣2x+3;(2)当△CEF与△COD相似时,P点的坐标为(﹣1,4)或(﹣2,3).
【解析】
【分析】
(1)根据正切函数,可得OB,根据旋转的性质,可得△DOC≌△AOB,根据待定系数法,可得函数解析式;
(2)分两种情况讨论:①当∠CEF=90°时,△CEF∽△COD,此时点P在对称轴上,即点P为抛物线的顶点;②当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于M点,得到△EFC∽△EMP,根据相似三角形的性质,可得PM与ME的关系,解方程,可得t的值,根据自变量与函数值的对应关系,可得答案.
【详解】
(1)在Rt△AOB中,OA=1,tan∠BAO3,∴OB=3OA=3.
∵△DOC是由△AOB绕点O逆时针旋转90°而得到的,∴△DOC≌△AOB,∴OC=OB=3,OD=OA=1,∴A,B,C的坐标分别为(1,0),(0,3),(﹣3,0),代入解析式为
,解得:,抛物线的解析式为y=﹣x2﹣2x+3;
(2)∵抛物线的解析式为y=﹣x2﹣2x+3,∴对称轴为l1,∴E点坐标为(﹣1,0),如图,分两种情况讨论:
①当∠CEF=90°时,△CEF∽△COD,此时点P在对称轴上,即点P为抛物线的顶点,P(﹣1,4);
②当∠CFE=90°时,△CFE∽△COD,过点P作PM⊥x轴于M点,∵∠CFE=∠PME=90°,∠CEF=∠PEM,∴△EFC∽△EMP,∴,∴MP=3ME.
∵点P的横坐标为t,∴P(t,﹣t2﹣2t+3).
∵P在第二象限,∴PM=﹣t2﹣2t+3,ME=﹣1﹣t,t<0,∴﹣t2﹣2t+3=3(﹣1﹣t),解得:t1=﹣2,t2=3(与t<0矛盾,舍去).
当t=﹣2时,y=﹣(﹣2)2﹣2×(﹣2)+3=3,∴P(﹣2,3).
综上所述:当△CEF与△COD相似时,P点的坐标为(﹣1,4)或(﹣2,3).
【点睛】
本题是二次函数综合题.解(1)的关键是利用旋转的性质得出OC,OD的长,又利用了待定系数法;解(2)的关键是利用相似三角形的性质得出MP=3ME.
3.已知,m,n是一元二次方程x2+4x+3=0的两个实数根,且|m|<|n|,抛物线y=x2+bx+c的图象经过点A(m,0),B(0,n),如图所示.
(1)求这个抛物线的解析式;
(2)设(1)中的抛物线与x轴的另一个交点为抛物线的顶点为D,求出点C,D的坐标,并判断△BCD的形状;
(3)点P是直线BC上的一个动点(点P不与点B和点C重合),过点P作x轴的垂线,交抛物线于点M,点Q在直线BC上,距离点P为个单位长度,设点P的横坐标为t,△PMQ的面积为S,求出S与t之间的函数关系式.
【答案】(1);(2)C(3,0),D(1,﹣4),△BCD是直角三角形;(3)
【解析】
试题分析:(1)先解一元二次方程,然后用待定系数法求出抛物线解析式;
(2)先解方程求出抛物线与x轴的交点,再判断出△BOC和△BED都是等腰直角三角形,从而得到结论;
(3)先求出QF=1,再分两种情况,当点P在点M上方和下方,分别计算即可.
试题解析:解(1)∵,∴,,∵m,n是一元二次方程的两个实数根,且|m|<|n|,∴m=﹣1,n=﹣3,∵抛物线的图象经过点A(m,0),B(0,n),∴,∴,∴抛物线解析式为;
(2)令y=0,则,∴,,∴C(3,0),∵=,∴顶点坐标D(1,﹣4),过点D作DE⊥y轴,∵OB=OC=3,∴BE=DE=1,∴△BOC和△BED都是等腰直角三角形,∴∠OBC=∠DBE=45°,∴∠CBD=90°,∴△BCD是直角三角形;
(3)如图,∵B(0,﹣3),C(3,0),∴直线BC解析式为y=x﹣3,∵点P的横坐标为t,PM⊥x轴,∴点M的横坐标为t,∵点P在直线BC上,点M在抛物线上,∴P(t,t﹣3),M(t,),过点Q作QF⊥PM,∴△PQF是等腰直角三角形,∵PQ=,∴QF=1.
①当点P在点M上方时,即0<t<3时,PM=t﹣3﹣()=,∴S=PM×QF==,②如图3,当点P在点M下方时,即t<0或t>3时,PM=﹣(t﹣3)=,∴S=PM×QF=()=.
综上所述,S=.
考点:二次函数综合题;分类讨论.
4.(12分)如图所示是隧道的截面由抛物线和长方形构成,长方形的长是12 m,宽是4 m.按照图中所示的直角坐标系,抛物线可以用y=x2+bx+c表示,且抛物线上的点C到OB的水平距离为3 m,到地面OA的距离为m.
(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?
(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?
【答案】(1)抛物线的函数关系式为y=x2+2x+4,拱顶D到地面OA的距离为10 m;(2)两排灯的水平距离最小是4 m.
【解析】
【详解】
试题分析:根据点B和点C在函数图象上,利用待定系数法求出b和c的值,从而得出函数解析式,根据解析式求出顶点坐标,得出最大值;根据题意得出车最外侧与地面OA的交点为(2,0)(或(10,0)),然后求出当x=2或x=10时y的值,与6进行比较大小,比6大就可以通过,比6小就不能通过;将y=8代入函数,得出x的值,然后进行做差得出最小值.
试题解析:(1)由题知点在抛物线上
所以,解得,所以
所以,当时,
答:,拱顶D到地面OA的距离为10米
(2)由题知车最外侧与地面OA的交点为(2,0)(或(10,0))
当x=2或x=10时,,所以可以通过
(3)令,即,可得,解得
答:两排灯的水平距离最小是
考点:二次函数的实际应用.
5.如图,抛物线y=ax2+bx+4与x轴交于点A(﹣1,0)、B(3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)如图1,D为抛物线对称轴上一动点,求D运动到什么位置时△DAC的周长最小;
(3)如图2,点E在第一象限抛物线上,AE与BC交于点F,若AF:FE=2:1,求E点坐标;
(4)点M、N同时从B点出发,分别沿BA、BC方向运动,它们的运动速度都是1个单位/秒,当点M运动到点A时,点N停止运动,则当点N停止运动后,在x轴上是否存在点P,使得△PBN是等腰三角形?若存在,直接写出点P的坐标;若不存在,请说明理由.
【答案】(1)(2)(3)点P的坐标P1(﹣1,0)或P2(7,0)或P3(﹣,0)或P4(,0).
【解析】
【分析】
(1)直接待定系数法代入求解即可 (2)找到D点在对称轴时是△DAC周长最小的点,先求出直线BC,然后D点横坐标是1,直接代入直线BC求出纵坐标即可 (3)作EH∥AB交BC于H,则∠FAB=∠FEH,∠FBA=∠FHE,易证△ABF∽△EHF,得,得EH=2,设E(x,),则H(x﹣2,),yE=yH,解出方程x=1或x=2,得到E点坐标 (4)△PBN是等腰三角形,分成三种情况,①BP=BC时,利用等腰三角性质直接得到P1(﹣1,0)或P2(7,0),②当NB=NP时,作NH⊥x轴,易得△NHB∽△COB,利用比例式得到NH、 BH从而得到 PH=BH,BP,进而得到OP,即得到P点坐标,③当PN=PB时,取NB中点K,作KP⊥BN,交x轴于点P,易得△NOB∽△PKB,利用比例式求出PB,进而得到OP,即求出P点坐标
【详解】
解:(1)将A(﹣1,0)、B(3,0)代入y=ax2+bx+4,
得
解得a=,b=,
∴抛物线的解析式;
(2)
∴抛物线对称轴为直线x=1,
∴D的横坐标为1,
由(1)可得C(0,4),
∵B(3,0),
∴直线BC:
∵DA=DB,
△DAC的周长=AC+CD+AD=AC+CD+BD,
连接BC,与对称轴交于点D,
此时CD+BD最小,
∵AC为定值,
∴此时△DAC的周长,
当x=1时,y=﹣×1+4=,
∴D(1,);
(3)作EH∥AB交BC于H,则∠FAB=∠FEH,∠FBA=∠FHE,
∴△ABF∽△EHF,
∵AF:FE=2:1,
∴,
∵AB=4,
∴EH=2,
设E(x,),则H(x﹣2,)
∵EH∥AB,
∴yE=yH,
∴=
解得x=1或x=2,
y=或4,
∴E(1,)或(2,4);
(4)∵A(﹣1,0)、B(3,0),C(0,4)
∴AB=4,OC=4,
点M运动到点A时,BM=AB=4,
∴BN=4,
∵△PBN是等腰三角形,
①BP=BC时,
若P在点B左侧,OP=PB﹣OB=4﹣3=1,
∴P1(﹣1,0),
若P在点B右侧,OP=OB+BP=4+3=7,
∴P2(7,0);
②当NB=NP时,作NH⊥x轴,
△NHB∽△COB,
∴
∴NH=OC==,
BH=BC=,
∴PH=BH=,
BP=,
∴OP=BP﹣OB=,
∴P3(﹣,0);
③当PN=PB时,
取NB中点K,作KP⊥BN,交x轴于点P,
∴△NOB∽△PKB,
∴
∴PB=,
∴OP=OB﹣PB=3﹣=
P4(,0)
综上,当△PBN是等腰三角形时,点P的坐标P1(﹣1,0)或P2(7,0)或P3(﹣,0)或P4(,0).
【点睛】
本题考查二次函数、平行线性质、相似三角形、等腰三角形性质及最短距离等知识点,综合程度比较高,对综合能力要求比较高. 第一问比较简单,考查待定系数法;第二问最短距离,找到D点是解题关键;第三问证明出相似是关键;第四问能够分情况讨论是解题关键
6.如图,菱形ABCD的边长为20cm,∠ABC=120°,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿A→B的路线向点B运动;过点P作PQ∥BD,与AC相交于点Q,设运动时间为t秒,0<t<5.
(1)设四边形PQCB的面积为S,求S与t的关系式;
(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?
(3)直线PN与AC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由.
【答案】(1) S=﹣2(0<t<5); (2) ;(3)见解析.
【解析】
【分析】
(1)如图1,根据S=S△ABC-S△APQ,代入可得S与t的关系式;
(2)设PM=x,则AM=2x,可得AP=x=4t,计算x的值,根据直角三角形30度角的性质可得AM=2PM=,根据AM=AO+OM,列方程可得t的值;
(3)存在,通过画图可知:N在CD上时,直线PN平分四边形APMN的面积,根据面积相等可得MG=AP,由AM=AO+OM,列式可得t的值.
【详解】
解:(1)如图1,∵四边形ABCD是菱形,
∴∠ABD=∠DBC=∠ABC=60°,AC⊥BD,
∴∠OAB=30°,
∵AB=20,
∴OB=10,AO=10,
由题意得:AP=4t,
∴PQ=2t,AQ=2t,
∴S=S△ABC﹣S△APQ,
=,
= ,
=﹣2t2+100(0<t<5);
(2)如图2,在Rt△APM中,AP=4t,
∵点Q关于O的对称点为M,
∴OM=OQ,
设PM=x,则AM=2x,
∴AP=x=4t,
∴x=,
∴AM=2PM=,
∵AM=AO+OM,
∴=10+10﹣2t,
t=;
答:当t为秒时,点P、M、N在一直线上;
(3)存在,
如图3,∵直线PN平分四边形APMN的面积,
∴S△APN=S△PMN,
过M作MG⊥PN于G,
∴ ,
∴MG=AP,
易得△APH≌△MGH,
∴AH=HM=t,
∵AM=AO+OM,
同理可知:OM=OQ=10﹣2t,
t=10=10﹣2t,
t=.
答:当t为秒时,使得直线PN平分四边形APMN的面积.
【点睛】
考查了全等三角形的判定与性质,对称的性质,三角形和四边形的面积,二次根式的化简等知识点,计算量大,解答本题的关键是熟练掌握动点运动时所构成的三角形各边的关系.
7.如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(3,0),与y轴交于点C(0,3).
(1)求抛物线y=x2+bx+c的表达式;
(2)点D为抛物线对称轴上一点,当△BCD是以BC为直角边的直角三角形时,求点D的坐标;
(3)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值.
【答案】(1)y=x2﹣4x+3;(2)(2,﹣1);(3).
【解析】
试题分析:(1)利用待定系数法求抛物线解析式;
(2)如图1,设D(2,y),利用两点间的距离公式得到BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,然后讨论:当BD为斜边时得到18+4+(y﹣3)2=1+y2;当CD为斜边时得到4+(y﹣3)2=1+y2+18,再分别解方程即可得到对应D的坐标;
(3)先证明∠CEF=90°得到△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,则PE=PG,PF=PH,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),接着利用t表示PF、PE,这样PE+EF=2PE+PF=﹣t2+4t,然后利用二次函数的性质解决问题.
试题解析:解:(1)把B(3,0),C(0,3)代入y=x2+bx+c得:,解得:,∴抛物线y=x2+bx+c的表达式为y=x2﹣4x+3;
(2)如图1,抛物线的对称轴为直线x=﹣=2,设D(2,y),B(3,0),C(0,3),∴BC2=32+32=18,DC2=4+(y﹣3)2,BD2=(3﹣2)2+y2=1+y2,当△BCD是以BC为直角边,BD为斜边的直角三角形时,BC2+DC2=BD2,即18+4+(y﹣3)2=1+y2,解得:y=5,此时D点坐标为(2,5);
当△BCD是以BC为直角边,CD为斜边的直角三角形时,BC2+DB2=DC2,即4+(y﹣3)2=1+y2+18,解得:y=﹣1,此时D点坐标为(2,﹣1);
(3)易得BC的解析式为y=﹣x+3.∵直线y=x+m与直线y=x平行,∴直线y=﹣x+3与直线y=x+m垂直,∴∠CEF=90°,∴△ECF为等腰直角三角形,作PH⊥y轴于H,PG∥y轴交BC于G,如图2,△EPG、△PHF都为等腰直角三角形,PE=PG,PF=PH,设P(t,t2﹣4t+3)(1<t<3),则G(t,﹣t+3),∴PF=PH=t,PG=﹣t+3﹣(t2﹣4t+3)=﹣t2+3t,∴PE=PG=﹣t2+t,∴PE+EF=PE+PE+PF=2PE+PF=﹣t2+3t+t=﹣t2+4t=﹣(t﹣2)2+4,当t=2时,PE+EF的最大值为4.
点睛:本题考查了二次函数的综合题.熟练掌握等腰直角三角形的性质、二次函数图象上点的坐标特征和二次函数的性质;会利用待定系数法求二次函数解析式;理解坐标与图形性质,记住两点间的距离公式.
8.如图1,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点C,抛物线经过A、C两点,与x轴的另一交点为点B.
(1)求抛物线的函数表达式;(2)点D为直线AC上方抛物线上一动点,
①连接BC、CD、BD,设BD交直线AC于点E,△CDE的面积为S1,△BCE的面积为S2.求:的最大值;
②如图2,是否存在点D,使得∠DCA=2∠BAC?若存在,直接写出点D的坐标,若不存在,说明理由.
【答案】(1);(2)①当时,的最大值是;②点D的坐标是
【解析】
【分析】
(1)根据题意得到A(-4,0),C(0,2)代入y=-x2+bx+c,于是得到结论;
(2)①如图,令y=0,解方程得到x1=-4,x2=1,求得B(1,0),过D作DM⊥x轴于M,过B作BN⊥x轴交于AC于N,根据相似三角形的性质即可得到结论;
②根据勾股定理的逆定理得到△ABC是以∠ACB为直角的直角三角形,取AB的中点P,求得P(-,0),得到PA=PC=PB=,过D作x轴的平行线交y轴于R,交AC的延线于G,∠DCF=2∠BAC=∠DGC+∠CDG,解直角三角形即可得到结论.
【详解】
解:(1)根据题意得A(-4,0),C(0,2),
∵抛物线y=-x2+bx+c经过A.C两点,
∴,
∴,
抛物线解析式为: ;
(2)①令,
∴
解得: ,
∴B(1,0)
过点D作轴交AC于M,过点B作轴交AC于点N,
∴∥
∴
∴
设:
∴
∵
∴
∴
∴当时,的最大值是 ;
②∵A(-4,0),B(1,0),C(0,2),
∴AC=2,BC=,AB=5,
∴AC2+BC2=AB2,
∴△ABC是以∠ACB为直角的直角三角形,
取AB的中点P,
∴P(-,0),
∴PA=PC=PB=,
∴∠CPO=2∠BAC,
∴tan∠CPO=tan(2∠BAC)=,
过D作x轴的平行线交y轴于R,交AC的延长线于G,如图,
∴∠DCF=2∠BAC=∠DGC+∠CDG,
∴∠CDG=∠BAC,
∴tan∠CDG=tan∠BAC=,
即RC:DR=,
令D(a,-a2-a+2),
∴DR=-a,RC=-a2-a,
∴(-a2-a):(-a)=1:2,
∴a1=0(舍去),a2=-2,
∴xD=-2,
∴-a2-a+2=3,
∴点D的坐标是
【点睛】
本题是二次函数综合题,涉及待定系数法求函数的解析式,相似三角形的判定和性质,解直角三角形等知识点,正确的作出辅助线是解题的关键,难度较大.
9.已知:如图,抛物线y=ax2+bx+c与坐标轴分别交于点A(0,6),B(6,0),C(﹣2,0),点P是线段AB上方抛物线上的一个动点.
(1)求抛物线的解析式;
(2)当点P运动到什么位置时,△PAB的面积有最大值?
(3)过点P作x轴的垂线,交线段AB于点D,再过点P做PE∥x轴交抛物线于点E,连结DE,请问是否存在点P使△PDE为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.
【答案】(1)抛物线解析式为y=﹣x2+2x+6;(2)当t=3时,△PAB的面积有最大值;(3)点P(4,6).
【解析】
【分析】(1)利用待定系数法进行求解即可得;
(2)作PM⊥OB与点M,交AB于点N,作AG⊥PM,先求出直线AB解析式为y=﹣x+6,设P(t,﹣t2+2t+6),则N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN•AG+PN•BM=PN•OB列出关于t的函数表达式,利用二次函数的性质求解可得;
(3)由PH⊥OB知DH∥AO,据此由OA=OB=6得∠BDH=∠BAO=45°,结合∠DPE=90°知若△PDE为等腰直角三角形,则∠EDP=45°,从而得出点E与点A重合,求出y=6时x的值即可得出答案.
【详解】(1)∵抛物线过点B(6,0)、C(﹣2,0),
∴设抛物线解析式为y=a(x﹣6)(x+2),
将点A(0,6)代入,得:﹣12a=6,
解得:a=﹣,
所以抛物线解析式为y=﹣(x﹣6)(x+2)=﹣x2+2x+6;
(2)如图1,过点P作PM⊥OB与点M,交AB于点N,作AG⊥PM于点G,
设直线AB解析式为y=kx+b,
将点A(0,6)、B(6,0)代入,得:
,
解得:,
则直线AB解析式为y=﹣x+6,
设P(t,﹣t2+2t+6)其中0<t<6,
则N(t,﹣t+6),
∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,
∴S△PAB=S△PAN+S△PBN
=PN•AG+PN•BM
=PN•(AG+BM)
=PN•OB
=×(﹣t2+3t)×6
=﹣t2+9t
=﹣(t﹣3)2+,
∴当t=3时,△PAB的面积有最大值;
(3)如图2,
∵PH⊥OB于H,
∴∠DHB=∠AOB=90°,
∴DH∥AO,
∵OA=OB=6,
∴∠BDH=∠BAO=45°,
∵PE∥x轴、PD⊥x轴,
∴∠DPE=90°,
若△PDE为等腰直角三角形,
则∠EDP=45°,
∴∠EDP与∠BDH互为对顶角,即点E与点A重合,
则当y=6时,﹣x2+2x+6=6,
解得:x=0(舍)或x=4,
即点P(4,6).
【点睛】本题考查了二次函数的综合问题,涉及到待定系数法、二次函数的最值、等腰直角三角形的判定与性质等,熟练掌握和灵活运用待定系数法求函数解析式、二次函数的性质、等腰直角三角形的判定与性质等是解题的关键.
10.在平面直角坐标系xOy中(如图).已知抛物线y=﹣x2+bx+c经过点A(﹣1,0)和点B(0,),顶点为C,点D在其对称轴上且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.
(1)求这条抛物线的表达式;
(2)求线段CD的长;
(3)将抛物线平移,使其顶点C移到原点O的位置,这时点P落在点E的位置,如果点M在y轴上,且以O、D、E、M为顶点的四边形面积为8,求点M的坐标.
【答案】(1)抛物线解析式为y=﹣x2+2x+;(2)线段CD的长为2;(3)M点的坐标为(0,)或(0,﹣).
【解析】
【分析】(1)利用待定系数法求抛物线解析式;
(2)利用配方法得到y=﹣(x﹣2)2+,则根据二次函数的性质得到C点坐标和抛物线的对称轴为直线x=2,如图,设CD=t,则D(2,﹣t),根据旋转性质得∠PDC=90°,DP=DC=t,则P(2+t,﹣t),然后把P(2+t,﹣t)代入y=﹣x2+2x+得到关于t的方程,从而解方程可得到CD的长;
(3)P点坐标为(4,),D点坐标为(2,),利用抛物线的平移规律确定E点坐标为(2,﹣2),设M(0,m),当m>0时,利用梯形面积公式得到•(m++2)•2=8当m<0时,利用梯形面积公式得到•(﹣m++2)•2=8,然后分别解方程求出m即可得到对应的M点坐标.
【详解】(1)把A(﹣1,0)和点B(0,)代入y=﹣x2+bx+c得
,解得,
∴抛物线解析式为y=﹣x2+2x+;
(2)∵y=﹣(x﹣2)2+,
∴C(2,),抛物线的对称轴为直线x=2,
如图,设CD=t,则D(2,﹣t),
∵线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处,
∴∠PDC=90°,DP=DC=t,
∴P(2+t,﹣t),
把P(2+t,﹣t)代入y=﹣x2+2x+得﹣(2+t)2+2(2+t)+=﹣t,
整理得t2﹣2t=0,解得t1=0(舍去),t2=2,
∴线段CD的长为2;
(3)P点坐标为(4,),D点坐标为(2,),
∵抛物线平移,使其顶点C(2,)移到原点O的位置,
∴抛物线向左平移2个单位,向下平移个单位,
而P点(4,)向左平移2个单位,向下平移个单位得到点E,
∴E点坐标为(2,﹣2),
设M(0,m),
当m>0时,•(m++2)•2=8,解得m=,此时M点坐标为(0,);
当m<0时,•(﹣m++2)•2=8,解得m=﹣,此时M点坐标为(0,﹣);
综上所述,M点的坐标为(0,)或(0,﹣).
【点睛】本题考查了二次函数的综合题,涉及到待定系数法、抛物线上点的坐标、旋转的性质、抛物线的平移等知识,综合性较强,正确添加辅助线、运用数形结合思想熟练相关知识是解题的关键.
11.如图,已知二次函数y=ax2+bx+c的图象与x轴相交于A(﹣1,0),B(3,0)两点,与y轴相交于点C(0,﹣3).
(1)求这个二次函数的表达式;
(2)若P是第四象限内这个二次函数的图象上任意一点,PH⊥x轴于点H,与BC交于点M,连接PC.
①求线段PM的最大值;
②当△PCM是以PM为一腰的等腰三角形时,求点P的坐标.
【答案】(1)二次函数的表达式y=x2﹣2x﹣3;(2)①PM最大=;②P(2,﹣3)或(3-,2﹣4).
【解析】
【分析】
(1)根据待定系数法,可得答案;
(2)①根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得二次函数,根据二次函数的性质,可得答案;②根据等腰三角形的定义,可得方程,根据解方程,可得答案.
【详解】
(1)将A,B,C代入函数解析式,
得,解得,
这个二次函数的表达式y=x2﹣2x﹣3;
(2)设BC的解析式为y=kx+b,
将B,C的坐标代入函数解析式,得
,解得,
BC的解析式为y=x﹣3,
设M(n,n﹣3),P(n,n2﹣2n﹣3),
PM=(n﹣3)﹣(n2﹣2n﹣3)=﹣n2+3n=﹣(n﹣)2+,
当n=时,PM最大=;
②当PM=PC时,(﹣n2+3n)2=n2+(n2﹣2n﹣3+3)2,
解得n1=0(不符合题意,舍),n2=2,
n2﹣2n﹣3=-3,
P(2,-3);
当PM=MC时,(﹣n2+3n)2=n2+(n﹣3+3)2,
解得n1=0(不符合题意,舍),n2=3+(不符合题意,舍),n3=3-,
n2﹣2n﹣3=2-4,
P(3-,2-4);
综上所述:P(2,﹣3)或(3-,2﹣4).
【点睛】
本题考查了二次函数的综合题,涉及到待定系数法、二次函数的最值、等腰三角形等知识,综合性较强,解题的关键是认真分析,弄清解题的思路有方法.
12.如图,在平面直角坐标系中,抛物线y=ax2+2ax﹣3a(a<0)与x轴相交于A,B两点,与y轴相交于点C,顶点为D,直线DC与x轴相交于点E.
(1)当a=﹣1时,求抛物线顶点D的坐标,OE等于多少;
(2)OE的长是否与a值有关,说明你的理由;
(3)设∠DEO=β,45°≤β≤60°,求a的取值范围;
(4)以DE为斜边,在直线DE的左下方作等腰直角三角形PDE.设P(m,n),直接写出n关于m的函数解析式及自变量m的取值范围.
【答案】(1)(﹣1,4),3;(2)结论:OE的长与a值无关.理由见解析;(3)﹣≤a≤﹣1;(4)n=﹣m﹣1(m<1).
【解析】
【分析】
(1)求出直线CD的解析式即可解决问题;
(2)利用参数a,求出直线CD的解析式求出点E坐标即可判断;
(3)求出落在特殊情形下的a的值即可判断;
(4)如图,作PM⊥对称轴于M,PN⊥AB于N.两条全等三角形的性质即可解决问题.
【详解】
解:(1)当a=﹣1时,抛物线的解析式为y=﹣x2﹣2x+3,
∴顶点D(﹣1,4),C(0,3),
∴直线CD的解析式为y=﹣x+3,
∴E(3,0),
∴OE=3,
(2)结论:OE的长与a值无关.
理由:∵y=ax2+2ax﹣3a,
∴C(0,﹣3a),D(﹣1,﹣4a),
∴直线CD的解析式为y=ax﹣3a,
当y=0时,x=3,
∴E(3,0),
∴OE=3,
∴OE的长与a值无关.
(3)当β=45°时,OC=OE=3,
∴﹣3a=3,
∴a=﹣1,
当β=60°时,在Rt△OCE中,OC=OE=3,
∴﹣3a=3,
∴a=﹣,
∴45°≤β≤60°,a的取值范围为﹣≤a≤﹣1.
(4)如图,作PM⊥对称轴于M,PN⊥AB于N.
∵PD=PE,∠PMD=∠PNE=90°,∠DPE=∠MPN=90°,
∴∠DPM=∠EPN,
∴△DPM≌△EPN,
∴PM=PN,PM=EN,
∵D(﹣1,﹣4a),E(3,0),
∴EN=4+n=3﹣m,
∴n=﹣m﹣1,
当顶点D在x轴上时,P(1,﹣2),此时m的值1,
∵抛物线的顶点在第二象限,
∴m<1.
∴n=﹣m﹣1(m<1).
故答案为:(1)(﹣1,4),3;(2)OE的长与a值无关;(3)﹣≤a≤﹣1;(4)n=﹣m﹣1(m<1).
【点睛】
本题是二次函数综合题,考查了二次函数的图象与性质。
13.已知矩形ABCD中,AB=5cm,点P为对角线AC上的一点,且AP=.如图①,动点M从点A出发,在矩形边上沿着的方向匀速运动(不包含点C).设动点M的运动时间为t(s),的面积为S(cm²),S与t的函数关系如图②所示:
(1)直接写出动点M的运动速度为 ,BC的长度为 ;
(2)如图③,动点M重新从点A出发,在矩形边上,按原来的速度和方向匀速运动.同时,另一个动点N从点D出发,在矩形边上沿着的方向匀速运动,设动点N的运动速度为.已知两动点M、N经过时间在线段BC上相遇(不包含点C),动点M、N相遇后立即停止运动,记此时的面积为.
①求动点N运动速度的取值范围;
②试探究是否存在最大值.若存在,求出的最大值并确定运动速度时间的值;若不存在,请说明理由.
【答案】(1)2,10;(2)①;②当时,取最大值.
【解析】
【分析】
(1)由题意可知图像中0~2.5s时,M在AB上运动,求出速度,2.5~7.5s时,M在BC上运动,求出BC长度;(2)①分别求出在C点相遇和在B点相遇时的速度,取中间速度,注意C点相遇时的速度不能取等于;②过M点做MH⊥AC,则
得到S1,同时利用=15,得到S2,再得到关于x的二次函数,利用二次函数性质求得最大值
【详解】
(1)5÷2.5=2;(7.5-2.5)×2=10
(2)①解:在C点相遇得到方程
在B点相遇得到方程
∴
解得
∵在边BC上相遇,且不包含C点
∴
②如下图
=15
过M点做MH⊥AC,则
∴
∴
=
=
因为,所以当时,取最大值.
【点睛】
本题重点考查动点问题,二次函数的应用,求不规则图形的面积等知识点,第一问关键能够从图像中得到信息,第二问第一小问关键在理清楚运动过程,第二小问关键在能够用x表示出S1和S2
14.如图,顶点M在y轴上的抛物线与直线y=x+1相交于A、B两点,且点A在x轴上,点B的横坐标为2,连结AM、BM.
(1)求抛物线的函数关系式;
(2)判断△ABM的形状,并说明理由;
(3)把抛物线与直线y=x的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(m,2m),当m满足什么条件时,平移后的抛物线总有不动点.
【答案】(1)抛物线解析式为y=x2﹣1;(2)△ABM为直角三角形.理由见解析;(3)当m≤时,平移后的抛物线总有不动点.
【解析】
试题分析:(1)分别写出A、B的坐标,利用待定系数法求出抛物线的解析式即可;
根据OA=OM=1,AC=BC=3,分别得到∠MAC=45°,∠BAC=45°,得到∠BAM=90°,进而得到△ABM是直角三角形;
(3)根据抛物线的平以后的顶点设其解析式为,
∵抛物线的不动点是抛物线与直线的交点,∴,
方程总有实数根,则≥0,得到m的取值范围即可
试题解析:解:(1)∵点A是直线与轴的交点,∴A点为(-1,0)
∵点B在直线上,且横坐标为2,∴B点为(2,3)
∵过点A、B的抛物线的顶点M在轴上,故设其解析式为:
∴,解得:
∴抛物线的解析式为.
(2)△ABM是直角三角形,且∠BAM=90°.理由如下:
作BC⊥轴于点C,∵A(-1,0)、B(2,3)∴AC=BC=3,∴∠BAC=45°;
点M是抛物线的顶点,∴M点为(0,-1)∴OA=OM=1,
∵∠AOM=90°∴∠MAC=45°;
∴∠BAM=∠BAC+∠MAC=90°∴△ABM是直角三角形.
(3)将抛物线的顶点平移至点(,),则其解析式为.
∵抛物线的不动点是抛物线与直线的交点,∴
化简得:
∴==
当时,方程总有实数根,即平移后的抛物线总有不动点
∴.
考点:二次函数的综合应用(待定系数法;直角三角形的判定;一元二次方程根的判别式)
15.抛物线y=x2+bx+c与x轴交于A(1,0),B(m,0),与y轴交于C.
(1)若m=﹣3,求抛物线的解析式,并写出抛物线的对称轴;
(2)如图1,在(1)的条件下,设抛物线的对称轴交x轴于D,在对称轴左侧的抛物线上有一点E,使S△ACE=S△ACD,求点E的坐标;
(3)如图2,设F(﹣1,﹣4),FG⊥y于G,在线段OG上是否存在点P,使∠OBP=∠FPG?若存在,求m的取值范围;若不存在,请说明理由.
【答案】(1)抛物线的解析式为:y=x2+2x﹣3=(x+1)2﹣4;对称轴是:直线x=﹣1;(2)点E的坐标为
展开阅读全文