资源描述
五年级小学数学下册期末复习试卷应用题(400题)附答案
一、人教五年级下册数学应用题
1.一个正方体容器,棱长为20厘米,放入一个土豆后(完全浸没水中),水面升高了3厘米,这个土豆的体积是多少?
2.一条公路,已经修了 干米,剩下的比已经修了的多 千米,这条公路有多少千米?
3.在一个长60cm,宽40cm的玻璃缸中放入一块石块,石块浸没于水中,这时水深20cm,取出石块后水深17cm,石块的体积是多少?
4.有一堆苹果,如果按每6个一份或每8个一份进行分,结果都多1个,这堆苹果最少有多少个?
5.下面两根小棒,要把它们截成同样长的小段,不能有剩余,每小段小棒最长是多少厘米?一共可以截成几小段?
6.某校五年级一共有四个班,每班的学生在31人至39人之间。
(1)在一次捐书活动中,五(1)班捐助的书占总数的 ,五(2)班捐的书占总数的 ,五(3)班捐的书占总数的 。五(4)班捐助的书占总数的几分之几?
(2)在一次学农活动中,把五年级四个班所有的学生平均分成8个组,或者平均分成12个组,都恰好分完没有剩余。五年级四个班一共有多少名学生?
7.如图,从长方体上挖去棱长为2cm的小正方体,求这个立体图形的表面积。
8.五年级有48名同学报名参加义务劳动。老师让他们自己分成人数相等的若干小组,要求组数大于2,小于10。一共有几种分法?分别可以分成几组?(写出思考过程)
9.一根方钢,长6米,横截面是一个边长为4厘米的正方形。
(1)这块方钢重多少吨?(1立方厘米钢重10克)
(2)一辆载重5吨的货车能否一次运载50根这样的方钢?
10.有47块水果糖和38颗奶糖平均分给一个小组的同学,结果水果糖剩2块,奶糖剩3块,这个小组最多有几位同学?
11.一个长方体水箱,长10dm,宽8dm,水深4.5dm,当把一块石块浸入水箱后,水位上升到6.5dm,这块石块的体积是多少?
12.甲、乙、丙三人到图书馆去借书,甲每6天去一次,乙每8天去一次,丙每9天去一次,如果4月25日他们三人在图书馆相遇,那么下一次都到图书馆是几月几日?
13.一个长方形铁皮,长30cm,宽25 cm,从四个角各切掉一个边长为4cm的正方形,然后做成盒子,这个盒子的底面积是多少?它的容积是多少?
14.一块长方体形状的大理石,体积为30立方米,底面是面积为6平方米的长方形,这块大理石的高是多少米?
15.看图计算下图的表面积和体积。(单位:cm)
表面积:
体积:
16.把48块月饼装在盒子里,每个盒子装得同样多,有几种装法?(装在至少两个盒子里)每种装法各需要几个盒子?如果有47块月饼呢?
17.一杯纯果汁,小丽喝了半杯后觉得甜,就兑满了水,又喝了 杯就出去玩了。小丽一共喝了多少杯纯果汁?(可以画图、文字、列式表达。)
18.矫正与反思
A杯:把4克糖溶解在16克水中化成糖水;
B杯:把5克糖溶解在22克水中化成糖水。
这两杯糖水,哪一杯会更甜?
(1)请你在上面正确的做法后面( )里打√。
(2)你喜欢谁的做法?请你解释其思路。
19.下面是林叔叔家和张叔叔家去年上半年用电情况统计图。
(1)林叔叔第二季度平均每月用电多少千瓦时?
(2)张叔叔家二月份的用电量是第一季度用电量的几分之几?
20.先认真阅读下面的背景资料再根据信息完成问题。
幸福小区里有个为民超市,超市房间从里面量长8米,宽5.6米,高3米,门窗面积共5.2平方米。超市收银台旁有一个长6分米,宽5分米,高4分米的长方体鱼缸。新冠肺炎疫情得到控制后,今年5月,超市进行了重新装修:房间的四壁和房顶贴上了新的墙纸,地面重新铺了正方形的地板砖,鱼缸(无盖)的棱上贴上了装饰条儿,鱼缸还放了美丽的珊瑚……6月1日超市重新开业,购进大量的商品,其中有很多小朋友爱喝的饮料,还有一些大米和80桶食用油。
(1)装修时至少用了多大面积的墙纸(门窗不贴墙纸)?
(2)如果用边长8分米,每块单价为108元的地砖来铺地,一共需要多少钱?
21.明明家的厨房长2.4米,宽2米,高2.6米,用瓷砖贴它的四壁,若购买边长2分米的正方形瓷砖,每块5元,一共要用多少元?
22.一个棱长是15cm的正方体水槽中,水深8cm,现将一块长12cm,宽是7.5cm的长方体石块,完全浸没在水中(水未溢出),水面上升5cm,石块的高是多少厘米?
23.希望小学有一间长10米、宽6米、高3.5米的长方体教室。
(1)这间教室的空间有多大?
(2)现在要在教室粉刷墙壁,扣除门、窗、黑板面积6平方米,这间教室要刷多少平方米?
24.有两根钢丝,长度分别是12cm、18cm。现在要把他们截成长度相同的小段,但每一根都不能剩余,每小段最长多少米?一共可以截成多少段?
25.一个长方体高24厘米,平行于底面截成三个长方体后,表面积比原来增加了120平方厘米,原来长方体的体积是多少立方厘米?
26.有两根木棒,一根长36dm,另一根长42dm,要把他们截成同样长的小段,而不能有剩余,每根小棒最长有多少dm?一共可以截成多少段?
27.有三张正方形纸,边长分别是6分米、18分米和24分米。如果想裁剪成长4分米、宽3分米的长方形小纸片,且没有剩余。选择裁剪哪张正方形纸比较合适,能够裁剪成多少张小长方形纸片?
28.把下面两根彩带剪成同样长的短彩带且没有剩余。每根短彩带最长是多少厘米?一共可以剪成多少根短彩带?
29.把长16米和40米的两根绳子截成同样长的小段,没有剩余。每段最长是多少?共截成了多少段?
30.富安小区要建一个游泳池,游泳池长12m,宽是6m,深2m。
(1)这个游泳池的占地面积是多少平方米?
(2)如果在游泳池的四周和底面贴上瓷砖,这个游泳池需要贴多少平方米的瓷砖?
(3)这个游泳池最多可以装多少升水?
【参考答案】***试卷处理标记,请不要删除
一、人教五年级下册数学应用题
1. 解:20×20×3
=400×3
=1200(立方厘米)
答:这个土豆的体积为1200立方厘米。
【解析】【分析】水面升高部分水的体积就是土豆的体积,因此用容器的底面积乘水面升高的高度即可求出土豆的体积。
2. 解:+(+)
=++
=
=(千米)
答:这条公路有千米。
【解析】【分析】这条公路的总长=已经修了的千米数+剩下的千米数(已经修了的千米数+剩下的比已经修了的多的千米数),代入数值计算即可。
3. 解:石块的体积=60×40×(20-17)
=2400×3
=7200(立方厘米)
答:石块的体积是7200立方厘米。
【解析】【分析】长方体的体积=长×宽×高,本题中石块的体积=玻璃缸的长×玻璃缸的宽×(放入石块时的水深-取出石块时的水深),代入数值计算即可。
4. 解:6和8的最小公倍数是24,
24+1=25(个)
答:这堆苹果最少有25个。
【解析】【分析】分析题中的信息“ 按每6个一份或每8个一份进行分,结果都多1个, ”,所以这堆苹果最少的个数为6和8的最小公倍数+1,所以求出6和8的最小公倍数是解题的关键。
5. 解:16=2×2×2×2,44=2×2×2,
所以16和44的最大公因数是2×2=4,
所以每小段木棒最长是4厘米。
16÷4+44÷4
=4+11
=15(小段)
答:每小段木棒最长是4厘米,一共可以截成15小段。
【解析】【分析】求每小段木棒最长的厘米数,即是求16和44的最大公因数,先将16和44分解质因数,再找出公共因数,公共因数的乘积即为16和44的最大公因数(每小段木棒最长的厘米数);一共可以截成的段数=第一根木棒的总长度÷每小段木棒最长的厘米数+第二根木棒的总长度÷每小段木棒最长的厘米数。
6. (1)解:1- - - =
答:五(4)班捐助的书占总数的 。
(2)解:8、12的最小公倍数是24,24÷4=6,31~39之间是6的倍数的是36,所以平均每班36人,一共有:36×4=144(人)
答:五年级四个班一共有144名学生。
【解析】【分析】(1)把捐赠书的总数看作单位“1”,用1-五(1)班占的分率-五(2)班占的分率-五(3)班占的分率=五(4)班占总数的几分之几。
(2) 五年级四个班所有的学生人数,既能够整除8,又能够整除12,说明五年级四个班的总人数是8和12的公倍数,先找出8和12的最小公倍数,再算4个班,平均每个班的人数,而每班的学生在31人至39人之间,接着具体确定平均每个班的具体人数是多少,就可以确定总人数了。
7. (5×4+5×7+4×7)×2+2×2×2
=166+8
=174(平方厘米)
答: 这个立体图形的表面积是174平方厘米。
【解析】【分析】从长方体上挖小正方体,图形的表面积增加了2个边长为2cm的面,据此解答。
8. 解:48=1×48=2×24=3×16=4×12=6×8,
因为组数大于2,小于10,一共有4种分法,①分成3组,每组16人,②分成4组,每组12人,③分成6组,每组8人,④分成8组,每组6人。
答:有4种分法,分别可以分成3组、4组、6组和8组。
【解析】【分析】根据题意可知,先求出48的因数,然后根据条件“ 分成人数相等的若干小组,要求组数大于2,小于10 ”可知,2<组数<10,据此找出合适的分组方法。
9. (1)解:6米=600厘米
4×4×600×10
=16×600×10
=9600×10
=96000(克)
96000÷1000÷1000=0.096(吨)
答:这块方钢重0.096吨。
(2)解:0.096×50=4.8(吨)
4.8<5,所以能运完。
答:一辆载重5吨的货车能一次运载50根这样的方钢。
【解析】【分析】(1)方钢的体积=截面的面积(边长×边长)×长(方钢的长,注意将方钢长的单位化为厘米),再用方钢的体积×1立方厘米钢重的克数计算出一根方钢的克数,再将其化成吨数即可;
(2)用一根方钢的吨数×方钢的根数=50根方钢的吨数,再与货车载重的吨数比较即可。
10. 解:水果糖、奶糖分别分出:47-2=45(块),38-3=35(块)
把45、35分解质因数:45=3×3×5,35=5×7
45、35的最大公因数:5。
答: 这个小组最多有5位同学。
【解析】【分析】用“分出块数=原有块数-剩余块数”,分别求出水果糖、奶糖分出块数;再求出二者的最大公因数,此题得解。
11. 解:10×8×(6.5-4.5)
=10×8×2
=80×2
=160(dm3)
答:这块石块的体积是160dm3。
【解析】【分析】此题主要考查了不规则物体的体积计算,水位上升部分的体积就是石块的体积,长方体水箱的长×宽×水位上升的高度=这块石块的体积,据此列式解答。
12. 解:6、8、9的最小公倍数是72
4月25日+72天=7月6日
答:下一次都到图书馆是7月6日。
【解析】【分析】先求出6、8、9的最小公倍数,这就是再次相遇经过的天数,然后在4月25日的时间上加上这些天数即可。
13. 解:(30-4×2)×(25-4×2)
=22×17
=374(平方厘米)
374×4=1496(立方厘米)
答:这个盒子的底面积是374平方厘米,它的容积是1496立方厘米。
【解析】【分析】盒子的底面积=(长-4×2)×(宽-4×2); 容积=底面积×4。
14. 解:30÷6=5(米)
答:这块大理石的高是5米。
【解析】【分析】长方体的体积=底面积×高,代入数值计算即可得出答案。
15. 解:表面积:
(12×6+12×4+6×4)×2+3×3×4
=(72+48+24)×2+36
=144×2+36
=288+36
=324(cm2)
体积:12×6×4+3×3×3
=288+27
=315(cm3)
【解析】【分析】图形的表面积是下面长方体的表面积加上上面正方体4个面的面积即可;体积是下面长方体体积加上上面正方体体积。
16. 解:平均每个盒子里装2块月饼,需要48÷2=24(个)盒子;
平均每个盒子里装3块月饼,需要48÷3=16(个)盒子;
平均每个盒子里装4块月饼,需要48÷4=12(个)盒子;
平均每个盒子里装6块月饼,需要48÷6=8(个)盒子;
平均每个盒子里装8块月饼,需要48÷8=6(个)盒子;
平均每个盒子里装12块月饼,需要48÷12=4(个)盒子;
平均每个盒子里装24块月饼,需要48÷24=2(个)盒子;
如果有47块月饼,做不到每个盒子装得同样多。
答:每个盒子装得同样多,有7种装法,从多到少各需要24、16、12、8、6、4、2个盒子,如果有47块月饼,做不到每个盒子装得同样多。
【解析】【分析】根据48的因数分析,两个数相乘积是48,一个因数是盒子数,一个因数是盒子里装的月饼数,据此解答。
17. 解:4÷6=(杯)
答:小丽一共喝了杯纯果汁。
【解析】【分析】一杯纯果汁被平均分成6份,喝了半杯就是喝了3份果汁,兑满了水,又喝了 杯就是喝了剩下3份果汁的 , 即喝了1份果汁,一共喝了4份果汁;喝的果汁份数÷果汁总份数=小丽一共喝的纯果汁杯数。
18. (1)
(2)解:我喜欢小华的做法,糖的质量÷糖水的质量=糖水的含糖量,哪个杯子中含糖量高,那个杯子中的糖水就甜。
【解析】【分析】糖的质量+水的质量=糖水的质量;糖的质量÷糖水的质量=糖水的含糖量;糖水的含糖量越高,糖水就越甜。
19. (1)解:(100+80+90)÷3
=270÷3
=90(千瓦时)
答:林叔叔第二季度平均每月用电90千瓦时。
(2)解:60÷(50+60+90)
=60÷200
=
答:张叔叔家二月份的用电量是第一季度用电量的。
【解析】【分析】(1)第二季度是4月、5月、6月;林叔叔家4、5、6月的用电量之和÷3=第二季度平均每月用电量;
(2)张叔叔家二月份的用电量÷1、2、3月的用电量之和=张叔叔家二月份的用电量是第一季度用电量的几分之几。
20. (1)解:8×5.6+(5.6×3+8×3)×2-5.2
=44.8+(16.8+24)×2-5.2
=44.8+81.6-5.2
=126.4-5.2
=121.2(m²)
答:装修时至少用了121.2m²的墙纸。
(2)解:8m=80dm,5.6m=56dm
80÷8=10
56÷8=7
10×7×108=7560(元)
或 80×56÷ (8×8)×108=7560(元)
答:一共需要7560元钱。
【解析】【分析】(1) 墙纸面积=房间的四壁和房顶面积- 门窗面积,房间的四壁和房顶面积=长×宽+(宽×高+长×高)×2。(2)1米=10分米,总价=数量×单价,数量=行数×列数,行数=宽÷地砖边长,列数=长÷地砖边长。
21. 解:(2.4×2.6+2×2.6)×2
=(6.24+5.2)×2
=11.44×2
=22.88(平方米),
22.88÷(0.2×0.2)×5
=22.88÷0.04×5
=572×5
=2860(元)。
答:一共要用2860元。
【解析】【分析】先根据“厨房四壁的面积=(长×高+宽×高)×2”计算出厨房四壁的面积,再根据“一共要用的钱数=瓷砖的数量×每块瓷砖的价钱=厨房四壁的面积÷每块瓷砖的面积×每块砌砖的价钱=厨房四壁的面积÷(瓷砖的边长×边长)×每块砌砖的价钱”,代入数值解答即可。
22. 解:15×15×5÷(12×7.5)
=1125÷90
=12.5(厘米)
答:石块的高是12.5厘米。
【解析】【分析】石块的高=上升的体积÷(石块的长×宽)=正方体水槽的棱长×棱长×水面上升的高度×(石块的长×宽),据此代入数值解答即可。
23. (1)解:10 ×6×3.5
=60×3.5
=210(立方米)
答:这间教室的空间有210立方米。
(2)解:10×6+(10×3.5+3.5×6)×2-6
=60+(35+21)×2-6
=60+56×2-6
=60+112-6
=166(平方米)
答:这间教室要刷166平方米。
【解析】【分析】(1)长方体体积=长×宽×高,根据体积公式计算这间教室的空间;
(2)地面是不需要粉刷的,根据长方体表面积公式,只计算一个底面,再加上四个侧面,然后减去门、窗、黑板的面积即可求出需要粉刷的面积。
24. 解:12=3×2×2,
18=2×3×3,
12和18的最大公因数是3×2=6,所以每小段最长是6米;
12÷6+18÷6
=2+3
=5(段)
答:每小段最长是6米,一共可以截成5段。
【解析】【分析】此题主要考查了最大公因数的应用,用分解质因数的方法求两个数的最大公因数,先把每个数分别分解质因数,再把两个数中的全部公有质因数提取出来连乘,所得的积就是这两个数的最大公因数;
然后用长÷每段的长度+宽÷每段的长度=一共可以截的段数,据此列式解答。
25. 解:120÷4×24
=30×24
=720(立方厘米)
答:原来长方体的体积是720立方厘米。
【解析】【分析】沿着平行于底面截成三个长方体后,表面积比原来增加了4个横截面的面积,平均每个横截面的面积(原来长方体的底面积)=表面积增加的总面积÷4,长方体的体积=底面积×高,代入数值计算,据此解答即可。
26. 解:36=2×2×3×3
42=2×3×7
36和42的最大公因数是2×3=6
一共可以截成:36÷6+42÷6=13(段)
答:每根小棒最长有6dm,一共可以截成13段。
【解析】【分析】此题主要考查了最大公因数的应用,用分解质因数的方法求两个数的最大公因数,先把每个数分别分解质因数,再把两个数中的全部公有质因数提取出来连乘,所得的积就是这两个数的最大公因数,也就是每根小棒最长的长度;
要求一共可以截成几段,分别用除法求出两根木棒截的段数,然后相加即可。
27. 解:4和3的倍数有12、24、......;
所以选择裁剪边长是24分米的正方形纸比较合适,
能够裁剪成的张数:
(24÷4)×(24÷3)
=6×8
=48(张)
答:选择裁剪边长是24分米的正方形纸比较合适,能够裁剪成48张小长方形纸片。
【解析】【分析】正方形的边长如果是4和3的倍数,这样裁剪起来没有剩余,比较合适;
(正方形的边长÷4分米)×(正方形的边长÷3分米)=可以裁剪的个数。
28. 解:48=12×4;36=12×3;
48和36的最大公因数是12;
每根短彩带最长是多少12厘米;
48÷12+36÷12=4+3=7(根)。
答: 每根短彩带最长是多少12厘米,一共可以剪成7根短彩带。
【解析】【分析】48和36的最大公因数就是每根短彩带最长的长度;彩带的长度÷每根短彩带最长的长度=可以剪成短彩带的根数,据此解答。
29. 解:16=2×8,40=5×8,
所以每段最长是8厘米,
(16+40)÷8=56÷8=7(段)
答:每段最长是8厘米,共截成了7段。
【解析】【分析】16和40的最大公因数是截取的最长的长度,两条绳子的长度和÷8米=截成的段数。
30. (1)解:12×6=72(平方米)
答:这个游泳池的占地面积是72平方米。
(2)解:12×6+(12×2+6×2)×2
=72+(24+12)×2
=72+36×2
=72+72
=144(平方米)
答:这个游泳池需要贴144平方米的瓷砖。
(3)解:12×6×2
=72×2
=144(立方米)
=144000升
答:这个游泳池最多可以装水144000升水。
【解析】【分析】(1)游泳池的占地面积=游泳池的底面积=长×宽,代入数值计算即可;
(2)需要贴瓷砖的平方米数=长×宽+(长×高+宽×高)×2,长方体的表面积-上面的面积,代入数值计算即可;
(3)水的体积=长×宽×高,最后将单位转化成升即可。
展开阅读全文