资源描述
一、解答题
1.在平面直角坐标系xOy中,对于给定的两点P,Q,若存在点M,使得△MPQ的面积等于1,即S△MPQ=1,则称点M为线段PQ的“单位面积点”,解答下列问题:
如图,在平面直角坐标系xOy中,点P的坐标为(1,0).
(1)在点A(1,2),B(﹣1,1),C(﹣1,﹣2),D(2,﹣4)中,线段OP的“单位面积点”是 ;
(2)已知点E(0,3),F(0,4),将线段OP沿y轴向上平移t(t>0)个单位长度,使得线段EF上存在线段OP的“单位面积点”,直接写出t的取值范围 .
(3)已知点Q(1,﹣2),H(0,﹣1),点M,N是线段PQ的两个“单位面积点”,点M在HQ的延长线上,若S△HMN≥S△PQN,求出点N纵坐标的取值范围.
2.已知:如图,直线AB//CD,直线EF交AB,CD于P,Q两点,点M,点N分别是直线CD,EF上一点(不与P,Q重合),连接PM,MN.
(1)点M,N分别在射线QC,QF上(不与点Q重合),当∠APM+∠QMN=90°时,
①试判断PM与MN的位置关系,并说明理由;
②若PA平分∠EPM,∠MNQ=20°,求∠EPB的度数.(提示:过N点作AB的平行线)
(2)点M,N分别在直线CD,EF上时,请你在备用图中画出满足PM⊥MN条件的图形,并直接写出此时∠APM与∠QMN的关系.(注:此题说理时不能使用没有学过的定理)
3.已知:直线AB∥CD,M,N分别在直线AB,CD上,H为平面内一点,连HM,HN.
(1)如图1,延长HN至G,∠BMH和∠GND的角平分线相交于点E.求证:2∠MEN﹣∠MHN=180°;
(2)如图2,∠BMH和∠HND的角平分线相交于点E.
①请直接写出∠MEN与∠MHN的数量关系: ;
②作MP平分∠AMH,NQ∥MP交ME的延长线于点Q,若∠H=140°,求∠ENQ的度数.(可直接运用①中的结论)
4.如图,∠EBF=50°,点C是∠EBF的边BF上一点.动点A从点B出发在∠EBF的边BE上,沿BE方向运动,在动点A运动的过程中,始终有过点A的射线AD∥BC.
(1)在动点A运动的过程中, (填“是”或“否”)存在某一时刻,使得AD平分∠EAC?
(2)假设存在AD平分∠EAC,在此情形下,你能猜想∠B和∠ACB之间有何数量关系?并请说明理由;
(3)当AC⊥BC时,直接写出∠BAC的度数和此时AD与AC之间的位置关系.
5.已知AB//CD.
(1)如图1,E为AB,CD之间一点,连接BE,DE,得到∠BED.求证:∠BED=∠B+∠D;
(2)如图,连接AD,BC,BF平分∠ABC,DF平分∠ADC,且BF,DF所在的直线交于点F.
①如图2,当点B在点A的左侧时,若∠ABC=50°,∠ADC=60°,求∠BFD的度数.
②如图3,当点B在点A的右侧时,设∠ABC=α,∠ADC=β,请你求出∠BFD的度数.(用含有α,β的式子表示)
6.如图,直线AB∥直线CD,线段EF∥CD,连接BF、CF.
(1)求证:∠ABF+∠DCF=∠BFC;
(2)连接BE、CE、BC,若BE平分∠ABC,BE⊥CE,求证:CE平分∠BCD;
(3)在(2)的条件下,G为EF上一点,连接BG,若∠BFC=∠BCF,∠FBG=2∠ECF,∠CBG=70°,求∠FBE的度数.
7.阅读下面文字:
对于
可以如下计算:
原式
上面这种方法叫拆项法,你看懂了吗?
仿照上面的方法,计算:
(1)
(2)
8.阅读理解:
一个多位数,如果根据它的位数,可以从左到右分成左、中、右三个数位相同的整数,其中a代表这个整数分出来的左边数,b代表的这个整数分出来的中间数,c代表这个整数分出来的右边数,其中a,b,c数位相同,若b﹣a=c﹣b,我们称这个多位数为等差数.
例如:357分成了三个数3,5,7,并且满足:5﹣3=7﹣5;
413223分成三个数41,32,23,并且满足:32﹣41=23﹣32;
所以:357和413223都是等差数.
(1)判断:148 等差数,514335 等差数;(用“是”或“不是”填空)
(2)若一个三位数是等差数,试说明它一定能被3整除;
(3)若一个三位数T是等差数,且T是24的倍数,求该等差数T.
9.(概念学习)
规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如2÷2÷2,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)等.类比有理数的乘方,我们把2÷2÷2记作2③,读作“2的圈3次方”,(﹣3)÷(﹣3)÷(﹣3)÷(﹣3)记作(﹣3)④,读作“﹣3的圈4次方”,一般地,把n个a(a≠0)记作aⓝ,读作“a的圈n次方”.
(初步探究)
(1)直接写出计算结果:2③= ,(﹣)⑤= ;
(深入思考)
我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?
(1)试一试:仿照上面的算式,将下列运算结果直接写成乘方的形式.
(﹣3)④= ;5⑥= ;(﹣)⑩= .
(2)想一想:将一个非零有理数a的圈n次方写成乘方的形式等于 ;
10.如果有一列数,从这列数的第2个数开始,每一个数与它的前一个数的比等于同一个非零的常数,这样的一列数就叫做等比数列(Geometric Sequences).这个常数叫做等比数列的公比,通常用字母q表示(q≠0).
(1)观察一个等比列数1,,…,它的公比q= ;如果an(n为正整数)表示这个等比数列的第n项,那么a18= ,an= ;
(2)如果欲求1+2+4+8+16+…+230的值,可以按照如下步骤进行:
令S=1+2+4+8+16+…+230…①
等式两边同时乘以2,得2S=2+4+8+16++32+…+231…②
由② ﹣ ①式,得2S﹣S=231﹣1
即(2﹣1)S=231﹣1
所以
请根据以上的解答过程,求3+32+33+…+323的值;
(3)用由特殊到一般的方法探索:若数列a1,a2,a3,…,an,从第二项开始每一项与前一项之比的常数为q,请用含a1,q,n的代数式表示an;如果这个常数q≠1,请用含a1,q,n的代数式表示a1+a2+a3+…+an.
11.给定一个十进制下的自然数,对于每个数位上的数,求出它除以的余数,再把每一个余数按照原来的数位顺序排列,得到一个新的数,定义这个新数为原数的“模二数”,记为.如.对于“模二数”的加法规定如下:将两数末位对齐,从右往左依次将相应数位.上的数分别相加,规定:与相加得;与相加得与相加得,并向左边一位进.如的“模二数”相加的运算过程如下图所示.
根据以上材料,解决下列问题:
(1)的值为______ ,的值为_
(2)如果两个自然数的和的“模二数”与它们的“模二数”的和相等,则称这两个数“模二相加不变”.如,因为,所以,即与满足“模二相加不变”.
①判断这三个数中哪些与“模二相加不变”,并说明理由;
②与“模二相加不变”的两位数有______个
12.先阅读下面的材料,再解答后面的各题:
现代社会会保密要求越来越高,密码正在成为人们生活的一部分,有一种密码的明文(真实文)按计算机键盘字母排列分解,其中这26个字母依次对应这26个自然数(见下表).
Q
W
E
R
T
Y
U
I
O
P
A
S
D
1
2
3
4
5
6
7
8
9
10
11
12
13
F
G
H
J
K
L
Z
X
C
V
B
N
M
14
15
16
17
18
19
20
21
22
23
24
25
26
给出一个变换公式:
将明文转成密文,如,即变为:,即A变为S.将密文转成成明文,如,即变为:,即D变为F.
(1)按上述方法将明文译为密文.
(2)若按上方法将明文译成的密文为,请找出它的明文.
13.如图①,在平面直角坐标系中,点,,其中,是16的算术平方根,,线段由线段平移所得,并且点与点A对应,点与点对应.
(1)点A的坐标为 ;点的坐标为 ;点的坐标为 ;
(2)如图②,是线段上不同于的任意一点,求证:;
(3)如图③,若点满足,点是线段OA上一动点(与点、A不重合),连交于点,在点运动的过程中,是否总成立?请说明理由.
14.如图,直线,一副直角三角板中,.
(1)若如图1摆放,当平分时,证明:平分.
(2)若如图2摆放时,则
(3)若图2中固定,将沿着方向平移,边与直线相交于点,作和的角平分线相交于点(如图3),求的度数.
(4)若图2中的周长,现将固定,将沿着方向平移至点与重合,平移后的得到,点的对应点分别是,请直接写出四边形的周长.
(5)若图2中固定,(如图4)将绕点顺时针旋转,分钟转半圈,旋转至与直线首次重合的过程中,当线段与的一条边平行时,请直接写出旋转的时间.
15.如图所示,A(1,0)、点B在y轴上,将三角形OAB沿x轴负方向平移,平移后的图形为三角形DEC,且点C的坐标为(﹣3,2).
(1)直接写出点E的坐标 ;
(2)在四边形ABCD中,点P从点B出发,沿“BC→CD”移动.若点P的速度为每秒1个单位长度,运动时间为t秒,回答下列问题:
①当t= 秒时,点P的横坐标与纵坐标互为相反数;
②求点P在运动过程中的坐标,(用含t的式子表示,写出过程);
③当点P运动到CD上时,设∠CBP=x°,∠PAD=y°,∠BPA=z°,试问 x,y,z之间的数量关系能否确定?若能,请用含x,y的式子表示z,写出过程;若不能,说明理由.
16.学校准备购进一批篮球和足球,已知2个篮球和6个足球共需480元;3个篮球和4个足球共需470元.
(1)求一个篮球和一个足球的售价各是多少元;
(2)学校准备购进两种球共50个,并且篮球的数量不少于足球数量的2倍,请设计出最省钱的购买方案,并说明理由.
17.如图,点A(1,n),B(n,1),我们定义:将点A向下平移1个单位,再向右平移1个单位,同时点B向上平移1个单位,再向左平移1个单位称为一次操作,此时平移后的两点记为A1,B1,t次操作后两点记为At,Bt.
(1)直接写出A1,B1,At,Bt的坐标(用含n、t的式子表示);
(2)以下判断正确的是 .
A.经过n次操作,点A,点B位置互换
B.经过(n﹣1)次操作,点A,点B位置互换
C.经过2n次操作,点A,点B位置互换
D.不管几次操作,点A,点B位置都不可能互换
(3)t为何值时,At,B两点位置距离最近?
18.在平面直角坐标系中,,满足.
(1)直接写出、的值: ; ;
(2)如图1,若点满足的面积等于6,求的值;
(3)设线段交轴于C,动点E从点C出发,在轴上以每秒1个单位长度的速度向下运动,动点F从点出发,在轴上以每秒2个单位长度的速度向右运动,若它们同时出发,运动时间为秒,问为何值时,有?请求出的值.
19.题目:满足方程组的x与y的值的和是2,求k的值.
按照常规方法,顺着题目思路解关于x,y的二元一次方程组,分别求出xy的值(含有字母k),再由x+y=2,构造关于k的方程求解,从而得出k值.
(1)某数学兴趣小组对本题的解法又进行了探究利用整体思想,对于方程组中每个方程变形得到“x+y”这个整体,或者对方程组的两个方程进行加减变形得到“x+y”整体值,从而求出k值请你运用这种整体思想的方法,完成题目的解答过程.
(2)小勇同学的解答是:观察方程①,令3x=k,5y=1
解得y=,3x+y=2,∴x=
∴k=3×=
把x=,y=代入方程②得k=﹣
所以k的值为或﹣.
请诊断分析并评价“小勇同学的解答”.
20.每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:
甲型机器
乙型机器
价格(万元/台)
a
b
产量(吨/月)
240
180
经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元.
(1) 求a、b的值;
(2) 若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?
(3) 在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一 种最省钱的购买方案.
21.某公园的门票价格如下表所示:
某中学七年级(1)、(2)两个班计划去游览该公园,其中(I)班的人数较少,不足 50 人;(2) 班人数略多,有 50 多人.如果两个班都以班为单位分别购票,则一共应付 1172 元,如 果两个班联合起来,作为一个团体购票,则需付 1078 元.
(1)列方程求出两个班各有多少学生;
(2)如果两个班联合起来买票,是否可以买单价为 9 元的票?你有什么省钱的方法来帮 他们买票呢?请给出最省钱的方案.
22.阅读下列文字,请仔细体会其中的数学思想.
(1)解方程组,我们利用加减消元法,很快可以求得此方程组的解为 ;
(2)如何解方程组呢?我们可以把m+5,n+3看成一个整体,设m+5=x,n+3=y,很快可以求出原方程组的解为 ;
(3)由此请你解决下列问题:
若关于m,n的方程组与有相同的解,求a、b的值.
23.如图,在平面直角坐标系中,点为坐标原点,点的坐标为,点的坐标为,其中是二元一次方程组的解,过点作轴的平行线交轴于点.
(1)求点的坐标;
(2)动点从点出发,以每秒个单位长度的速度沿射线的方向运动,连接,设点的运动时间为秒,三角形的面积为,请用含的式子表示(不用写出相应的的取值范围);
(3)在(2)的条件下,在动点从点出发的同时,动点从点出发以每秒个单位长度的速度沿线段的方向运动.过点作直线的垂线,点为垂足;过点作直线的垂线,点为垂足.当时,求的值.
24.某治污公司决定购买10台污水处理设备.现有甲、乙两种型号的设备可供选择,其中每台的价格与月处理污水量如下表:
甲型
乙型
价格(万元/台)
x
y
处理污水量(吨/月)
300
260
经调查:购买一台甲型设备比购买一台乙型设备多2万元,购买3台甲型设备比购买4台乙型设备少2万元.
(1)求x,y的值;
(2)如果治污公司购买污水处理设备的资金不超过91万元,求该治污公司有哪几种购买方案;
(3)在(2)的条件下,如果月处理污水量不低于2750吨,为了节约资金,请为该公司设计一种最省钱的购买方案.
25.对x,y定义一种新运算T,规定:T(x,y)=ax+2by﹣1(其中a、b均为非零常数),这里等式右边是通常的四则运算,例如:T(0,1)=a•0+2b•1﹣1=2b﹣1.
(1)已知T(1,﹣1)=﹣2,T(4,2)=3.
①求a,b的值;
②若关于m的不等式组恰好有2个整数解,求实数p的取值范围;
(2)若T(x,y)=T(y,x)对任意实数x,y都成立(这里T(x,y)和T(y,x)均有意义),则a,b应满足怎样的关系式?
26.小语爸爸开了一家茶叶专卖店,包装设计专业毕业的小语为爸爸设计了一款纸质长方体茶叶包包装盒(纸片厚度不计).如图,阴影部分是裁剪掉的部分,沿图中实线折叠做成的长方体纸盒的上下底面是正方形,有三处长方形形状的“接口”用来折叠后粘贴或封盖.
(1)若小语用长,宽的长方形纸片,恰好能做成一个符合要求的包装盒,盒高是盒底边长的倍,三处“接口”的宽度相等.则该茶叶盒的容积是多少?
(2)小语爸爸的茶叶专卖店以每盒元购进一批茶叶,按进价增加作为售价,第一个月由于包装粗糙,只售出不到一半但超过三分之一的量;第二个月采用了小语的包装后,马上售完了余下的茶叶,但每盒成本增加了元,售价仍不变,已知在整个买卖过程中共盈利元,求这批茶叶共进了多少盒?
27.已知关于x、y的二元一次方程
(1)若方程组的解x、y满足,求a的取值范围;
(2)求代数式的值.
28.请阅读求绝对值不等式和的解的过程.
对于绝对值不等式,从图1的数轴上看:大于而小于的数的绝对值小于,所以的解为;
对于绝对值不等式,从图2的数轴上看:小于或大于的数的绝对值大于,所以的解为或.
(1)求绝对值不等式的解
(2)已知绝对值不等式的解为,求的值
(3)已知关于,的二元一次方程组的解满足,其中是负整数,求的值.
29.如图,已知点,,.
(1)求的面积;
(2)点是在坐标轴上异于点的一点,且的面积等于的面积,求满足条件的点的坐标;
(3)若点的坐标为,且,连接交于点,在轴上有一点,使的面积等于的面积,请直接写出点的坐标__________(用含的式子表示).
30.对,定义一种新的运算,规定:(其中).
(1)若已知,,则_________.
(2)已知,.求,的值;
(3)在(2)问的基础上,若关于正数的不等式组恰好有2个整数解,求的取值范围.
【参考答案】***试卷处理标记,请不要删除
一、解答题
1.(1),;(2)或;(3)见解析
【分析】
(1)分别根据三角形的面积计算△OPA,△DPB,△DPC,△OPD的面积即可;
(2)分线段OP在线段EF下方和线段OP在线段EF上方分别求解;
(3)画出图形,根据S△PQN=1,得到S△HMN≥,分当xN=0时,当xN=2时,分别结合S△HMN≥,得到不等式,求出N点纵坐标的范围.
【详解】
解:(1)S△OPA=,则点A是线段OP的“单位面积点”,
S△OPB=,则点B不是线段OP的“单位面积点”,
S△OPC=,则点C是线段OP的“单位面积点”,
S△OPD=,则点D不是线段OP的“单位面积点”,
(2)设点G是线段OP的“单位面积点”,则S△OPG=1,
∵点E的坐标为(0,3),点F的坐标为(0,4),且点G在线段EF上,
∴点G的横坐标为0,
∵S△OPG=1,线段OP为y轴向上平移t(t>0)个单位长度,
当为单位面积点时,
当为单位面积点时,
综上所述:1≤t≤2或5≤t≤6;
(3)∵M,N是线段PQ的两个单位面积点,
∴S△PQM=1,S△PQN=1,
∵P(1,0),Q(1,-2),
∴PQ=2,
∴M,N的横坐标为0或2,
∵点M在HQ的延长线上,
∴点M的横坐标为xM=2,
∵S△HMN≥S△PQN,
∴S△HMN≥,
当xN=0时,S△HMN=,
则,
∴或;
当xN=2时,S△HMN=,
则,
∴或.
【点睛】
本题主要考查三角形的面积公式,并且能够理解单位面积点的定义,解题关键是找到单位面积点的轨迹进行求解.
2.(1)①PM⊥MN,理由见解析;②∠EPB的度数为125°;(2)∠APM +∠QMN=90°或∠APM -∠QMN=90°.
【分析】
(1)①利用平行线的性质得到∠APM=∠PMQ,再根据已知条件可得到PM⊥MN;
②过点N作NH∥CD,利用角平分线的定义以及平行线的性质求得∠MNH=35°,即可求解;
(2)分三种情况讨论,利用平行线的性质即可解决.
【详解】
解:(1)①PM⊥MN,理由见解析:
∵AB//CD,
∴∠APM=∠PMQ,
∵∠APM+∠QMN=90°,
∴∠PMQ +∠QMN=90°,
∴PM⊥MN;
②过点N作NH∥CD,
∵AB//CD,
∴AB// NH∥CD,
∴∠QMN=∠MNH,∠EPA=∠ENH,
∵PA平分∠EPM,
∴∠EPA=∠ MPA,
∵∠APM+∠QMN=90°,
∴∠EPA +∠MNH=90°,即∠ENH +∠MNH=90°,
∴∠MNQ +∠MNH +∠MNH=90°,
∵∠MNQ=20°,
∴∠MNH=35°,
∴∠EPA=∠ENH=∠MNQ +∠MNH=55°,
∴∠EPB=180°-55°=125°,
∴∠EPB的度数为125°;
(2)当点M,N分别在射线QC,QF上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMQ +∠QMN=90°,∠APM=∠PMQ,
∴∠APM +∠QMN=90°;
当点M,N分别在射线QC,线段PQ上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMN=90°,∠APM=∠PMQ,
∴∠PMQ -∠QMN=90°,
∴∠APM -∠QMN=90°;
当点M,N分别在射线QD,QF上时,如图:
∵PM⊥MN,AB//CD,
∴∠PMQ +∠QMN=90°,∠APM+∠PMQ=180°,
∴∠APM+90°-∠QMN=180°,
∴∠APM -∠QMN=90°;
综上,∠APM +∠QMN=90°或∠APM -∠QMN=90°.
【点睛】
本题主要考查了平行线的判定与性质,熟练掌握两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等等知识是解题的关键.
3.(1)见解析;(2)①2∠MEN+∠MHN=360°;②20°
【分析】
(1)过点E作EP∥AB交MH于点Q,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等即可得证.
(2)①过点H作GI∥AB,利用(1)中结论2∠MEN﹣∠MHN=180°,利用平行线的性质、角平分线性质、邻补角和为180°,角与角之间的基本运算、等量代换等得出∠AMH+∠HNC=360°﹣(∠BMH+∠HND),进而用等量代换得出2∠MEN+∠MHN=360°.
②过点H作HT∥MP,由①的结论得2∠MEN+∠MHN=360°,∠H=140°,∠MEN=110°.利用平行线性质得∠ENQ+∠ENH+∠NHT=180°,由角平分线性质及邻补角可得∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.继续使用等量代换可得∠ENQ度数.
【详解】
解:(1)证明:过点E作EP∥AB交MH于点Q.如答图1
∵EP∥AB且ME平分∠BMH,
∴∠MEQ=∠BME=∠BMH.
∵EP∥AB,AB∥CD,
∴EP∥CD,又NE平分∠GND,
∴∠QEN=∠DNE=∠GND.(两直线平行,内错角相等)
∴∠MEN=∠MEQ+∠QEN=∠BMH+∠GND=(∠BMH+∠GND).
∴2∠MEN=∠BMH+∠GND.
∵∠GND+∠DNH=180°,∠DNH+∠MHN=∠MON=∠BMH.
∴∠DHN=∠BMH﹣∠MHN.
∴∠GND+∠BMH﹣∠MHN=180°,
即2∠MEN﹣∠MHN=180°.
(2)①:过点H作GI∥AB.如答图2
由(1)可得∠MEN=(∠BMH+∠HND),
由图可知∠MHN=∠MHI+∠NHI,
∵GI∥AB,
∴∠AMH=∠MHI=180°﹣∠BMH,
∵GI∥AB,AB∥CD,
∴GI∥CD.
∴∠HNC=∠NHI=180°﹣∠HND.
∴∠AMH+∠HNC=180°﹣∠BMH+180°﹣∠HND=360°﹣(∠BMH+∠HND).
又∵∠AMH+∠HNC=∠MHI+∠NHI=∠MHN,
∴∠BMH+∠HND=360°﹣∠MHN.
即2∠MEN+∠MHN=360°.
故答案为:2∠MEN+∠MHN=360°.
②:由①的结论得2∠MEN+∠MHN=360°,
∵∠H=∠MHN=140°,
∴2∠MEN=360°﹣140°=220°.
∴∠MEN=110°.
过点H作HT∥MP.如答图2
∵MP∥NQ,
∴HT∥NQ.
∴∠ENQ+∠ENH+∠NHT=180°(两直线平行,同旁内角互补).
∵MP平分∠AMH,
∴∠PMH=∠AMH=(180°﹣∠BMH).
∵∠NHT=∠MHN﹣∠MHT=140°﹣∠PMH.
∴∠ENQ+∠ENH+140°﹣(180°﹣∠BMH)=180°.
∵∠ENH=∠HND.
∴∠ENQ+∠HND+140°﹣90°+∠BMH=180°.
∴∠ENQ+(HND+∠BMH)=130°.
∴∠ENQ+∠MEN=130°.
∴∠ENQ=130°﹣110°=20°.
【点睛】
本题考查了平行线的性质,角平分线的性质,邻补角,等量代换,角之间的数量关系运算,辅助线的作法,正确作出辅助线是解题的关键,本题综合性较强.
4.(1)是;(2)∠B=∠ACB,证明见解析;(3)∠BAC=40°,AC⊥AD.
【分析】
(1)要使AD平分∠EAC,则要求∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则当∠ACB=∠B时,有AD平分∠EAC;
(2)根据角平分线可得∠EAD=∠CAD,由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,则有∠ACB=∠B;
(3)由AC⊥BC,有∠ACB=90°,则可求∠BAC=40°,由平行线的性质可得AC⊥AD.
【详解】
解:(1)是,理由如下:
要使AD平分∠EAC,
则要求∠EAD=∠CAD,
由平行线的性质可得∠B=∠EAD,∠ACB=∠CAD,
则当∠ACB=∠B时,有AD平分∠EAC;
故答案为:是;
(2)∠B=∠ACB,理由如下:
∵AD平分∠EAC,
∴∠EAD=∠CAD,
∵AD∥BC,
∴∠B=∠EAD,∠ACB=∠CAD,
∴∠B=∠ACB.
(3)∵AC⊥BC,
∴∠ACB=90°,
∵∠EBF=50°,
∴∠BAC=40°,
∵AD∥BC,
∴AD⊥AC.
【点睛】
此题考查了角平分线和平行线的性质,熟练掌握角平分线和平行线的有关性质是解题的关键.
5.(1)见解析;(2)55°;(3)
【分析】
(1)根据平行线的判定定理与性质定理解答即可;
(2)①如图2,过点作,当点在点的左侧时,根据,,根据平行线的性质及角平分线的定义即可求的度数;
②如图3,过点作,当点在点的右侧时,,,根据平行线的性质及角平分线的定义即可求出的度数.
【详解】
解:(1)如图1,过点作,
则有,
,
,
,
;
(2)①如图2,过点作,
有.
,
.
.
.
即,
平分,平分,
,,
.
答:的度数为;
②如图3,过点作,
有.
,
,
.
.
.
即,
平分,平分,
,,
.
答:的度数为.
【点睛】
本题考查了平行线的判定与性质,解决本题的关键是熟练掌握平行线的判定与性质.
6.(1)证明见解析;(2)证明见解析;(3)∠FBE=35°.
【分析】
(1)根据平行线的性质得出∠ABF=∠BFE,∠DCF=∠EFC,进而解答即可;
(2)由(1)的结论和垂直的定义解答即可;
(3)由(1)的结论和三角形的角的关系解答即可.
【详解】
证明:(1)∵AB∥CD,EF∥CD,
∴AB∥EF,
∴∠ABF=∠BFE,
∵EF∥CD,
∴∠DCF=∠EFC,
∴∠BFC=∠BFE+∠EFC=∠ABF+∠DCF;
(2)∵BE⊥EC,
∴∠BEC=90°,
∴∠EBC+∠BCE=90°,
由(1)可得:∠BFC=∠ABE+∠ECD=90°,
∴∠ABE+∠ECD=∠EBC+∠BCE,
∵BE平分∠ABC,
∴∠ABE=∠EBC,
∴∠ECD=∠BCE,
∴CE平分∠BCD;
(3)设∠BCE=β,∠ECF=γ,
∵CE平分∠BCD,
∴∠DCE=∠BCE=β,
∴∠DCF=∠DCE﹣∠ECF=β﹣γ,
∴∠EFC=β﹣γ,
∵∠BFC=∠BCF,
∴∠BFC=∠BCE+∠ECF=γ+β,
∴∠ABF=∠BFE=2γ,
∵∠FBG=2∠ECF,
∴∠FBG=2γ,
∴∠ABE+∠DCE=∠BEC=90°,
∴∠ABE=90°﹣β,
∴∠GBE=∠ABE﹣∠ABF﹣∠FBG=90°﹣β﹣2γ﹣2γ,
∵BE平分∠ABC,
∴∠CBE=∠ABE=90°﹣β,
∴∠CBG=∠CBE+∠GBE,
∴70°=90°﹣β+90°﹣β﹣2γ﹣2γ,
整理得:2γ+β=55°,
∴∠FBE=∠FBG+∠GBE=2γ+90°﹣β﹣2γ﹣2γ=90°﹣(2γ+β)=35°.
【点睛】
本题主要考查平行线的性质,解决本题的关键是根据平行线的性质解答.
7.(1)(2)
【分析】
(1)根据例子将每项的整数部分相加,分数部分相加即可解答;
(2)根据例子将每项的整数部分相加,分数部分相加即可解答.
【详解】
(1)
(2)原式
【点睛】
此题考察新计算方法,正确理解题意是解题的关键,根据例子即可仿照计算.
8.(1)不是,是;(2)见解析;(3)432或456或840或864或888
【分析】
(1)根据等差数的定义判定即可;
(2)设这个三位数是M,,根据等差数的定义可知,进而得出即可.
(3)根据等差数的定义以及24的倍数的数的特征可先求出a的值,再根据是8的倍数可确定c的值,又因为,所以可确定a、c为偶数时b才可取整数有意义,排除不符合条件的a、c值,再将符合条件的a、c代入求出b的值,即可求解.
【详解】
解:(1)∵ ,
∴148不是等差数,
∵ ,
∴514335是等差数;
(2)设这个三位数是M,,
∵ ,
∴ ,
∵ ,
∴这个等差数是3的倍数;
(3)由(2)知 ,
∵T是24的倍数,
∴ 是8的倍数,
∵2c是偶数,
∴只有当35a也是偶数时才有可能是8的倍数,
∴或4或6或8,
当时, ,此时若,则 ,若 ,则 ,若 ,则,大于70又是8的倍数的最小数是72,之后是80,88当时 不符合题意;
当时,,此时若,则,若,则,(144、152是8的倍数),
当时,,此时若,则,若,则,
(216、244是8的倍数),
当时,,此时若,则,若,则,
若,则,(280,288,296是8的倍数),
∵,
∴若a是偶数,则c也是偶数时b才有意义,
∴和是c是奇数均不符合题意,
当时, ,
当时,,
当时,,
当时,,
当时,,
综上,T为432或456或840或864或888.
【点睛】
本题考查新定义下的实数运算、有理数混合运算,整式的加减运算,能够结合倍数的特点及熟练掌握整数的奇偶性是解题关键.
9.初步探究:(1),-8;深入思考:(1)(−)2,()4,;(2)
【分析】
初步探究:(1)分别按公式进行计算即可;
深入思考:(1)把除法化为乘法,第一个数不变,从第二个数开始依次变为倒数,由此分别得出结果;
(2)结果前两个数相除为1,第三个数及后面的数变为,则;
【详解】
解:初步探究:(1)2③=2÷2÷2=,
;
深入思考:(1)(-3)④=(-3)÷(-3)÷(-3)÷(-3)=1×(−)2=(−)2;
5⑥=5÷5÷5÷5÷5÷5=()4;
同理可得:(﹣)⑩=;
(2)
【点睛】
本题是有理数的混合运算,也是一个新定义的理解与运用;一方面考查了有理数的乘除法及乘方运算,另一方面也考查了学生的阅读理解能力;注意:负数的奇数次方为负数,负数的偶数次方为正数,同时也要注意分数的乘方要加括号,对新定义,其实就是多个数的除法运算,要注意运算顺序.
10.(1) , , ;(2);(3)
【分析】
(1)÷1即可求出q,根据已知数的特点求出a18和an即可;
(2)根据已知先求出3S,再相减,即可得出答案;
(3)根据(1)(2)的结果得出规律即可.
【详解】
解:(1)÷1=,
a18=1×()17=,an=1×()n﹣1=,
故答案为:,,;
(2)设S=3+32+33+…+323,
则3S=32+33+…+323+324,
∴2S=324﹣3,
∴S=
(3)an=a1•qn﹣1,a1+a2+a3+…+an=.
【点睛】
本题考查了整式的混合运算的应用,主要考查学生的理解能力和阅读能力,题目是一道比较好的题目,有一定的难度.
11.(1)1011,1101;(2)①12,65,97,见解析,②38
【分析】
(1) 根据“模二数”的定义计算即可;
(2) ①根据“模二数”和模二相加不变”的定义,分别计算和12+23,65+23,97+23的值,即可得出答案
②设两位数的十位数字为a,个位数字为b,根据a、b的奇偶性和“模二数”和模二相加不变”的定义进行讨论,从而得出与“模二相加不变”的两位数的个数
【详解】
解: (1) ,
故答案为:
①,
,
与满足“模二相加不变”.
,,
,
与不满足“模二相加不变”.
,
,
,
与满足“模二相加不变”
②当此两位数小于77时,设两位数的十位数字为a,个位数字为b,;
当a为偶数,b为偶数时,
∴
∴与满足“模二相加不变”有12个(28、48、68不符合)
当a为偶数,b为奇数时,
∴
∴与不满足“模二相加不变”.但27、47、67、29、49、69符合共6个
当a为奇数,b为奇数时,
∴
∴与不满足“模二相加不变”.但17、37、57、19、39、59也不符合
当a为奇数,b为偶数时,
∴
∴与满足“模二相加不变”有16个,(18、38、58不符合)
当此两位数大于等于77时,符合共有4个
综上所述共有12+6+16+4=38
故答案为:38
【点睛】
本题考查新定义,数字的变化类,认真观察、仔细思考,分类讨论的数学思想是解决这类问题的方法.能够理解定义是解题的关键.
12.(1)N,E,T密文为M,Q,P;(2)密文D,W,N的明文为F,Y,C.
【分析】
(1) 由图表找出N,E,T对应的自然数,再根据变换公式变成密文.
(2)由图表找出N=M,Q,P对应的自然数,再根据变换.公式变成明文.
【详解】
解:(1)将明文NET转换成密文:
即N,E,T密文为M,Q,P;
(2)将密文D,W,N转换成明文:
即密文D,W,N的明文为F,Y,C.
【点睛】
本题考查有理数的混合运算,此题较复杂,解答本题的关键是由图表中找到对应的数或字母,正确运用转换公式进行转换.
13.(1),,;(2)证明见解析;(3)成立,理由见解析
【分析】
(1)根据算术平方根、立方根得、;再根据直角坐标系、平移的性质分析,即可得到答案;
(2)根据平移的性质,得;根据平行线性质,分别推导得,,从而完成证明;
(3)结合题意,根据平行线的性质,推导得、;结合(2)的结论,通过计算即可完成证明.
【详解】
(1)连接
∵是16的算术平方根
∴
∴
∴
∵
∴
∴
∴
∵线段由线段平移所得,并且点与点A对应,点与点对应
∴,
∴
故答案为:,,;
(2)∵线段由线段平移所得
∴,
∴
∵
∴
∵
∴
∴
(3)∵
∴
∵
∴
∵
∴,即
∵
∴
∴
∵
∴
∵,
∴
由(2)的结论得:,
∵,
∴
∴
∵
∴
∴
∴在点运动的过程中,总成立.
【点睛】
本题考查了算术平方根、立方
展开阅读全文