资源描述
人教七年级下册数学期末试卷(附答案)
一、选择题
1.的平方根是()
A. B. C.± D.±
2.下列对象中不属于平移的是( )
A.在平坦雪地上滑行的滑雪运动员 B.上上下下地迎送来客的电梯
C.一棵倒映在湖中的树 D.在笔直的铁轨上飞驰而过的火车
3.若点在第四象限内,则点的坐标可能是( )
A. B. C. D.
4.下列命题中:
①若,则点在原点处;
②点一定在第四象限
③已知点与点,m,n均不为0,则直线平行x轴;
④已知点A(2,-3),轴,且,则B点的坐标为(2,2).
以上命题是真命题的有( )
A.1个 B.2个 C.3个 D.4个
5.如图,,将一个含角的直角三角尺按如图所示的方式放置,若的度数为,则的度数为( )
A. B. C. D.
6.下列语句中正确的是( )
A.-9的平方根是-3 B.9的平方根是3 C.9的立方根是 D.9的算术平方根是3
7.如图,直线,E为上一点,G为上一点,,垂足为F,若,则的度数为( )
A. B. C. D.
8.在平面直角坐标系xOy中,对于点,我们把点叫做点P的伴随点,已知点的伴随点为,点的伴随点为,点的伴随点为,…,这样依次得点A1,A2,A3,…,,…,若点的坐标为,则点A2021的坐标为( )
A. B. C. D.
九、填空题
9.已知非零实数a.b满足|2a-4|+|b+2|++4=2a,则2a+b=_______.
十、填空题
10.点(3,0)关于y轴对称的点的坐标是_______
十一、填空题
11.如图,DB是的高,AE是角平分线,,则______.
十二、填空题
12.如图,a∥b,∠1=68°,∠2=42°,则∠3=_____________.
十三、填空题
13.把一张长方形纸条按如图所示折叠后,若,则_______;
十四、填空题
14.观察下列等式:1﹣=,2﹣=,3﹣=,4﹣=,…,根据你发现的规律,则第20个等式为_____.
十五、填空题
15.如图,在平面直角坐标系中,已知点,,连接,交y轴于B,且,,则点B坐标为__.
十六、填空题
16.在平面直角坐标系中,对于点P(x,y),我们把点P′(-y+1,x+1)叫做点P的幸运点.已知点A1的幸运点为A2,点A2的幸运点为A3,点A3的幸运点为A4,…,这样依次得到点A1,A2,A3,…,An.若点A1的坐标为(3,1),则点A2020的坐标为_______.
十七、解答题
17.计算:(1)
(2)
十八、解答题
18.求下列各式中的值
(1)
(2)
十九、解答题
19.如图,,,求度数.完成说理过程并注明理由.
解:∵,
∴________( )
又∵,
∴,
∴__________( )
∴( )
∵,
∴______度.
二十、解答题
20.如图,三角形在平面直角坐标系中.
(1)请写出三角形各点的坐标;
(2)求出三角形的面积;
(3)若把三角形向上平移2个单位,再向左平移1个单位得到三角形,在图中画出平移后三角形.
二十一、解答题
21.(1)如果是的整数部分,是的小数部分,求的平方根.
(2)当为何值时,关于的方程的解与方程的解互为相反数.
二十二、解答题
22.如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪开拼成一个正方形.
(1)拼成的正方形的面积与边长分别是多少?
(2)如图所示,以数轴的单位长度的线段为边作一个直角三角形,以数轴的-1点为圆心,直角三角形的最大边为半径画弧,交数轴正半轴于点A,那么点A表示的数是多少?点A表示的数的相反数是多少?
(3)你能把十个小正方形组成的图形纸,剪开并拼成正方形吗?若能,请画出示意图,并求它的边长
二十三、解答题
23.(1)如图①,若∠B+∠D=∠E,则直线AB与CD有什么位置关系?请证明(不需要注明理由).
(2)如图②中,AB//CD,又能得出什么结论?请直接写出结论 .
(3)如图③,已知AB//CD,则∠1+∠2+…+∠n-1+∠n的度数为 .
二十四、解答题
24.(感知)如图①,,求的度数.小明想到了以下方法:
解:如图①,过点作,
(两直线平行,内错角相等)
(已知),
(平行于同一条直线的两直线平行),
(两直线平行,同旁内角互补).
(已知),
(等式的性质).
(等式的性质).
即(等量代换).
(探究)如图②,,,求的度数.
(应用)如图③所示,在(探究)的条件下,的平分线和的平分线交于点,则的度数是_______________.
二十五、解答题
25.如图所示,已知射线.点E、F在射线CB上,且满足,OE平分
(1)求的度数;
(2)若平行移动AB,那么的值是否随之发生变化?如果变化,找出变化规律.若不变,求出这个比值;
(3)在平行移动AB的过程中,是否存在某种情况,使?若存在,求出其度数.若不存在,请说明理由.
【参考答案】
一、选择题
1.C
解析:C
【分析】
根据平方根的定义开平方求解即可;
【详解】
解:∵,
∴的平方根是;
故答案选C.
【点睛】
本题主要考查了平方根的计算,准确计算是解题的关键.
2.C
【分析】
根据平移的性质,对选项进行一一分析,利用排除法求解.
【详解】
解:A、滑雪运动员在平坦雪地上滑行,符合平移的性质,故属于平移;
B、电梯上上下下地迎送来客,符合平移的性质,故属于平移
解析:C
【分析】
根据平移的性质,对选项进行一一分析,利用排除法求解.
【详解】
解:A、滑雪运动员在平坦雪地上滑行,符合平移的性质,故属于平移;
B、电梯上上下下地迎送来客,符合平移的性质,故属于平移;
C、一棵树倒映在湖中,山与它在湖中的像成轴对称,故不属于平移;
D、火车在笔直的铁轨上飞弛而过,符合平移的性质,故属于平移;
故选:C.
【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或轴对称.
3.B
【分析】
根据第四象限内点坐标的特点:横坐标为正,纵坐标为负即可得出答案.
【详解】
根据第四象限内点坐标的特点:横坐标为正,纵坐标为负,只有满足要求,
故选:B.
【点睛】
本题主要考查平面直角坐标系中点的坐标的特点,掌握各个象限内点的坐标的特点是解题的关键.
4.B
【分析】
利用有理数的性质和坐标轴上点的坐标特征可对①进行判断;利用或可对②进行判断;利用、点的纵坐标相同可对③进行判断;通过把点坐标向上或向下平移5个单位得到点坐标可对④进行判断.
【详解】
解:若,则或,所以点坐标轴上,所以①为假命题;
,点一定在第四象限,所以②为真命题;
已知点与点,,均不为0,则直线平行轴,所以③为真命题;
已知点,轴,且,则点的坐标为或,所以④为假命题.
故选:B.
【点睛】
本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.
5.A
【分析】
过三角板60°角的顶点作直线EF∥AB,则EF∥CD,利用平行线的性质,得到∠3+∠4=∠1+∠2=60°,代入计算即可.
【详解】
如图,过三角板60°角的顶点作直线EF∥AB,
∵AB∥CD,
∴EF∥CD,
∴∠3=∠1,∠4=∠2,
∵∠3+∠4=60°,
∴∠1+∠2=60°,
∵∠1=25°,
∴∠2=35°,
故选A.
【点睛】
本题考查了平行线的辅助线构造,平行线的判定与性质,三角板的意义,熟练掌握平行线的判定与性质是解题的关键.
6.D
【分析】
根据平方根、立方根、算术平方根的定义逐一进行判断即可.
【详解】
A. 负数没有平方根,故A选项错误;
B. 9的平方根是±3,故B选项错误;
C. 9的立方根是,故C选项错误;
D. 9的算术平方根是3,正确,
故选D.
【点睛】
本题考查了平方根、立方根、算术平方根等知识,熟练掌握相关概念以及求解方法是解题的关键.
7.C
【分析】
根据内角和定理可知的度数,再根据平行线的性质即可求得的度数.
【详解】
∵
∴
∵
∴
∵
∴.
故选:C
【点睛】
本题主要考查了三角形内角和定理及平行线的性质,熟练掌握相关角度计算方法是解决本题的关键.
8.C
【分析】
根据“伴随点”的定义依次求出各点,得出每4个点为一个循环组依次循环,用2021除以4,根据余数的情况确定点A2021的坐标即可.
【详解】
解:∵点的坐标为,
∴点的伴随点的坐标为,即
解析:C
【分析】
根据“伴随点”的定义依次求出各点,得出每4个点为一个循环组依次循环,用2021除以4,根据余数的情况确定点A2021的坐标即可.
【详解】
解:∵点的坐标为,
∴点的伴随点的坐标为,即 ,
同理得:
∴每4个点为一个循环组依次循环,
∵,
∴A2021的坐标与的坐标相同,
即A2021的坐标为,
故选:C.
【点睛】
本题主要考查平面直角坐标系中探索点的变化规律问题,解题关键是读懂题目,理解“伴随点”的定义,并能够得出每4个点为一个循环组依次循环.
九、填空题
9.4
【分析】
首先根据算术平方根的被开方数≥0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十2|+=0.根据非负数的性质可分别求出a和b的值,即可求出2a+b的值.
【详解】
解:
解析:4
【分析】
首先根据算术平方根的被开方数≥0,求出a的范围,进而得出|2a-4|等于原值,代入原式得出|b十2|+=0.根据非负数的性质可分别求出a和b的值,即可求出2a+b的值.
【详解】
解:由题意可得a≥3,
∴2a-4>0,
已知等式整理得:|b+2|+=0,
∴a=3,b=-2,
∴2a+b=2×3-2=4.
故答案为4.
【点睛】
本题考查非负数的性质:几个非负数的和为0时,这几个非负数都为0,熟练掌握非负数的性质是解题的关键.
十、填空题
10.(-3,0)
【分析】
根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.
【详解】
解:点(m,n)关于y轴对称点的坐标(-m,n),
所以点(3,0)关于y轴
解析:(-3,0)
【分析】
根据平面直角坐标系中两个关于坐标轴成轴对称的点的坐标特点,直接用假设法设出相关点即可.
【详解】
解:点(m,n)关于y轴对称点的坐标(-m,n),
所以点(3,0)关于y轴对称的点的坐标为(-3,0).
故答案为:(-3,0).
【点睛】
本题考查平面直角坐标系点的对称性质:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
十一、填空题
11.【分析】
由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD与∠FAD互余,与∠BFE是对顶角,故可求得∠BFE的度数.
【详解】
∵AE是角平分线,∠BAE=26°,
∴∠FAD=∠B
解析:
【分析】
由角平分线的定义可得,∠FAD=∠BAE=26°,而∠AFD与∠FAD互余,与∠BFE是对顶角,故可求得∠BFE的度数.
【详解】
∵AE是角平分线,∠BAE=26°,
∴∠FAD=∠BAE=26°,
∵DB是△ABC的高,
∴∠AFD=90°−∠FAD=90°−26°=64°,
∴∠BFE=∠AFD=64°.
故答案为64°.
【点睛】
本题考查了三角形内角和定理,三角形的角平分线、中线和高,熟练掌握三角形内角和定理是解题的关键.
十二、填空题
12.110°
【分析】
如图,利用平行线的性质,求得∠4=∠5=∠1,计算∠2+∠5,再次利用平行线的性质,得到∠3=∠2+∠5.
【详解】
如图,∵a∥b,
∴∠4=∠1=68°,
∴∠5=∠4=68
解析:110°
【分析】
如图,利用平行线的性质,求得∠4=∠5=∠1,计算∠2+∠5,再次利用平行线的性质,得到∠3=∠2+∠5.
【详解】
如图,∵a∥b,
∴∠4=∠1=68°,
∴∠5=∠4=68°,
∵∠2=42°,
∴∠5+∠2=68°+42°=110°,
∵a∥b,
∴∠3=∠2+∠5,
∴∠3=110°,
故答案为:110°.
【点睛】
本题考查了平行线的性质,对顶角相等,熟练掌握平行线的性质,对顶角相等是解题的关键.
十三、填空题
13.55°
【分析】
直接根据补角的定义可知∠AOB′+∠BOG+∠B′OG=180°,再由图形翻折变换的性质可知∠BOG=∠B′OG,再由平行线的性质可得出结论.
【详解】
解:∵∠AOB′=70°,
解析:55°
【分析】
直接根据补角的定义可知∠AOB′+∠BOG+∠B′OG=180°,再由图形翻折变换的性质可知∠BOG=∠B′OG,再由平行线的性质可得出结论.
【详解】
解:∵∠AOB′=70°,∠AOB′+∠BOG+∠B′OG=180°,
∴∠BOG+∠B′OG=180°-70°=110°.
∵∠B′OG由∠BOG翻折而成,
∴∠BOG=∠B′OG,
∴∠BOG= =55°.
∵AB∥CD,
∴∠OGD=∠BOG=55°.
故答案为:55°.
【点睛】
本题考查的是平行线的性质,熟知图形翻折不变性的性质是解答此题的关键.
十四、填空题
14.20﹣.
【分析】
观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.
【详解】
观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为
等式右边的
解析:20﹣.
【分析】
观察已知等式,找出等式左边和右边的规律,再归纳总结出一般规律,由此即可得出答案.
【详解】
观察已知等式,等式左边的第一个数的规律为,第二个数的规律为:分子为,分母为
等式右边的规律为:分子为,分母为
归纳类推得:第n个等式为(n为正整数)
当时,这个等式为,即
故答案为:.
【点睛】
本题考查了实数运算的规律型问题,从已知等式中归纳类推出一般规律是解题关键.
十五、填空题
15.【分析】
由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面积可求出的值,则答案可求出.
【详解】
解:(1),,
,,,
,,
.
如图,连接,设,
,
,
解析:
【分析】
由立方根及算术平方根、完全平方式求出,的值,得出,两点的坐标,连接,设,根据三角形的面积可求出的值,则答案可求出.
【详解】
解:(1),,
,,,
,,
.
如图,连接,设,
,
,
,
,
,
点的坐标为,
故答案是:.
【点睛】
本题考查了立方根及算术平方根、完全平方公式、三角形的面积、坐标与图形的性质,解题的关键是利用分割的思想解答.
十六、填空题
16.(0,-2)
【分析】
根据伴随点的定义,罗列出部分点A的坐标,根据点A的变化找出规律“A4n+1(3,1),A4n+2(0,4),A4n+3(-3,1),A4n+4(0,-2)(n为自然数)”,根
解析:(0,-2)
【分析】
根据伴随点的定义,罗列出部分点A的坐标,根据点A的变化找出规律“A4n+1(3,1),A4n+2(0,4),A4n+3(-3,1),A4n+4(0,-2)(n为自然数)”,根据此规律即可解决问题.
【详解】
解:观察,发现规律:A1(3,1),A2(0,4),A3(-3,1),A4(0,-2),A5(3,1),…,
∴A4n+1(3,1),A4n+2(0,4),A4n+3(-3,1),A4n+4(0,-2)(n为自然数).
∵2020=4×504+4,
∴点A2020的坐标为(0,-2).
故答案为:(0,-2).
【点睛】
本题考查了规律型中的点的坐标,解题的关键是发现规律“A4n+1(3,1),A4n+2(0,4),A4n+3(-3,1),A4n+4(0,-2)(n为自然数)”.
十七、解答题
17.(1)0;(2)4
【分析】
(1)根据绝对值的性质去绝对值然后合并即可;
(2)根据乘法分配律计算即可.
【详解】
(1)解原式=
=0;
(2)解原式=
=3+1
解析:(1)0;(2)4
【分析】
(1)根据绝对值的性质去绝对值然后合并即可;
(2)根据乘法分配律计算即可.
【详解】
(1)解原式=
=0;
(2)解原式=
=3+1
=4.
故答案为(1)0;(2)4.
【点睛】
本题考查实数的运算、绝对值,掌握绝对值的性质以及运算法则是解题的关键.
十八、解答题
18.(1);(2)
【分析】
(1)先移项,再根据平方根的性质开平方即可得;
(2)方程变形后,再根据立方根的性质开立方可得关于x的方程,解之可得.
【详解】
解:(1)
∴
即
(2)
解得,
解析:(1);(2)
【分析】
(1)先移项,再根据平方根的性质开平方即可得;
(2)方程变形后,再根据立方根的性质开立方可得关于x的方程,解之可得.
【详解】
解:(1)
∴
即
(2)
解得,
【点睛】
本题考查了立方根,平方根,解题的关键是熟练掌握平方根与立方根的性质.
十九、解答题
19.∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70
【分析】
根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等
解析:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70
【分析】
根据两直线平行,同位角相等可得∠2=∠3,通过等量代换得出∠1=∠3,再根据内错角相等,两直线平行,得出AB∥DG,然后根据两直线平行,同旁内角互补解答即可.
【详解】
解:∵EF∥AD,
∴∠2=∠3(两直线平行,同位角相等).
又∵∠1=∠2,
∴∠1=∠3,
∴AB∥DG(内错角相等,两直线平行).
∴∠AGD+∠BAC=180°(两直线平行,同旁内角互补).
∵∠AGD=110°,
∴∠BAC=70度.
故答案为:∠3;两直线平行,同位角相等;DG;内错角相等,两直线平行;∠BAC;两直线平行,同旁内角互补;70.
【点睛】
本题考查了平行线的判定与性质,熟记性质与判定方法,并判断出AB∥DG是解题的关键.
二十、解答题
20.(1),,;(2)7;(3)见解析
【分析】
(1)根据平面直角坐标系中点的位置,即可求解;
(2)三角形的面积为长方形面积减去三个直角三角形的面积,即可求解;
(3)根据点的平移规则,求得三点坐标
解析:(1),,;(2)7;(3)见解析
【分析】
(1)根据平面直角坐标系中点的位置,即可求解;
(2)三角形的面积为长方形面积减去三个直角三角形的面积,即可求解;
(3)根据点的平移规则,求得三点坐标,连接对应线段即可.
【详解】
解:(1)根据平面直角坐标系中点的位置,可得:
,,;
(2)三角形的面积
;
(3)三角形向上平移2个单位,再向左平移1个单位得到三角形
可得,,,连接,三角形如图所示:
【点睛】
此题考查了平面直角坐标系中点的坐标以及平移,熟练掌握平面直角坐标系中点的坐标以及平移规则是解题的关键.
二十一、解答题
21.(1)±3;(2)m=-4
【分析】
(1)估算,得到的范围,从而确定x、y的值,再代入计算即可.
(2)首先解得第二个方程的解,然后根据相反数的定义得到第一个方程的解,再代入求出m的值即可.
【详
解析:(1)±3;(2)m=-4
【分析】
(1)估算,得到的范围,从而确定x、y的值,再代入计算即可.
(2)首先解得第二个方程的解,然后根据相反数的定义得到第一个方程的解,再代入求出m的值即可.
【详解】
解:(1)∵,
∴,
∴,
∴x=6,y=,
∴=9,
∴的的平方根为±3;
(2),
解得:x=-9,
∴的解为x=9,代入,
得,
解得:m=-4.
【点睛】
本题考查了一元一次方程的解,无理数的估算、平方根的意义,以及解一元一次方程,解题的关键是得到方程的解.
二十二、解答题
22.(1)5;;(2);;(3)能,.
【分析】
(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.
(2)求出斜边长即可.
(3)一共有10个小正
解析:(1)5;;(2);;(3)能,.
【分析】
(1)易得5个小正方形的面积的和,那么就得到了大正方形的面积,求得面积的算术平方根即可为大正方形的边长.
(2)求出斜边长即可.
(3)一共有10个小正方形,那么组成的大正方形的面积为10,边长为10的算术平方根,画图.
【详解】
试题分析:
解:(1)拼成的正方形的面积与原面积相等1×1×5=5,
边长为,
如图(1)
(2)斜边长=,
故点A表示的数为:;点A表示的相反数为:
(3)能,如图
拼成的正方形的面积与原面积相等1×1×10=10,边长为.
考点:1.作图—应用与设计作图;2.图形的剪拼.
二十三、解答题
23.(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D ;(3)(n-1)•180°
【分析】
(1)过点E作EF//AB,利用平行线的性质则可得出
解析:(1)AB//CD,证明见解析;(2)∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D ;(3)(n-1)•180°
【分析】
(1)过点E作EF//AB,利用平行线的性质则可得出∠B=∠BEF,再由已知及平行线的判定即可得出AB∥CD;
(2)如图,过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,根据探究(1)的证明过程及方法,可推出∠E+∠G=∠B+∠F+∠D,则可由此得出规律,并得出∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D;
(3)如图,过点M作EF∥AB,过点N作GH∥AB,则可由平行线的性质得出∠1+∠2+∠MNG =180°×2,依此即可得出此题结论.
【详解】
解:(1)过点E作EF//AB,
∴∠B=∠BEF.
∵∠BEF+∠FED=∠BED,
∴∠B+∠FED=∠BED.
∵∠B+∠D=∠E(已知),
∴∠FED=∠D.
∴CD//EF(内错角相等,两直线平行).
∴AB//CD.
(2)过点E作EM∥AB,过点F作FN∥AB,过点G作GH∥AB,
∵AB∥CD,
∴AB∥EM∥FN∥GH∥CD,
∴∠B=∠BEM,∠MEF=∠EFN,∠NFG=∠FGH,∠HGD=∠D,
∴∠BEF+∠FGD=∠BEM+∠MEF+∠FGH+∠HGD=∠B+∠EFN+∠NFG+∠D=∠B+∠EFG+∠D,
即∠E+∠G=∠B+∠F+∠D.
由此可得:开口朝左的所有角度之和与开口朝右的所有角度之和相等,
∴∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.
故答案为:∠E1+∠E2+…∠En=∠B+∠F1+∠F2+…∠Fn-1+∠D.
(3)如图,过点M作EF∥AB,过点N作GH∥AB,
∴∠APM+∠PME=180°,
∵EF∥AB,GH∥AB,
∴EF∥GH,
∴∠EMN+∠MNG=180°,
∴∠1+∠2+∠MNG =180°×2,
依次类推:∠1+∠2+…+∠n-1+∠n=(n-1)•180°.
故答案为:(n-1)•180°.
【点睛】
本题考查了平行线的性质与判定,属于基础题,关键是过E点作AB(或CD)的平行线,把复杂的图形化归为基本图形.
二十四、解答题
24.[探究] 70°;[应用] 35
【分析】
[探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数.
[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线
解析:[探究] 70°;[应用] 35
【分析】
[探究]如图②,根据AB∥CD,∠AEP=50°,∠PFC=120°,即可求∠EPF的度数.
[应用]如图③所示,在[探究]的条件下,根据∠PEA的平分线和∠PFC的平分线交于点G,可得∠G的度数.
【详解】
解:[探究]如图②,过点P作PM∥AB,
∴∠MPE=∠AEP=50°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴PM∥CD(平行于同一条直线的两直线平行),
∴∠PFC=∠MPF=120°(两直线平行,内错角相等).
∴∠EPF=∠MPF-MPE=120°50°=70°(等式的性质).
答:∠EPF的度数为70°;
[应用]如图③所示,
∵EG是∠PEA的平分线,PG是∠PFC的平分线,
∴∠AEG=∠AEP=25°,∠GCF=∠PFC=60°,
过点G作GM∥AB,
∴∠MGE=∠AEG=25°(两直线平行,内错角相等)
∵AB∥CD(已知),
∴GM∥CD(平行于同一条直线的两直线平行),
∴∠GFC=∠MGF=60°(两直线平行,内错角相等).
∴∠G=∠MGF-MGE=60°-25°=35°.
答:∠G的度数是35°.
故答案为:35.
【点睛】
本题考查了平行线的判定与性质、平行公理及推论,解决本题的关键是掌握平行线的判定与性质.
二十五、解答题
25.(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°.
【分析】
(1)根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,从而得出答案;
(2
解析:(1)40°;(2)的值不变,比值为;(3)∠OEC=∠OBA=60°.
【分析】
(1)根据OB平分∠AOF,OE平分∠COF,即可得出∠EOB=∠EOF+∠FOB=∠COA,从而得出答案;
(2)根据平行线的性质,即可得出∠OBC=∠BOA,∠OFC=∠FOA,再根据∠FOA=∠FOB+∠AOB=2∠AOB,即可得出∠OBC:∠OFC的值为1:2.
(3)设∠AOB=x,根据两直线平行,内错角相等表示出∠CBO=∠AOB=x,再根据三角形的一个外角等于与它不相邻的两个内角的和表示出∠OEC,然后利用三角形的内角和等于180°列式表示出∠OBA,然后列出方程求解即可.
【详解】
(1)∵CB∥OA
∴∠C+∠COA=180°
∵∠C=100°
∴∠COA=180°-∠C=80°
∵∠FOB=∠AOB,OE平分∠COF
∴∠FOB+∠EOF=(∠AOF+∠COF)=∠COA=40°;
∴∠EOB=40°;
(2)∠OBC:∠OFC的值不发生变化
∵CB∥OA
∴∠OBC=∠BOA,∠OFC=∠FOA
∵∠FOB=∠AOB
∴∠FOA=2∠BOA
∴∠OFC=2∠OBC
∴∠OBC:∠OFC=1:2
(3)当平行移动AB至∠OBA=60°时,∠OEC=∠OBA.
设∠AOB=x,
∵CB∥AO,
∴∠CBO=∠AOB=x,
∵CB∥OA,AB∥OC,
∴∠OAB+∠ABC=180°,∠C+∠ABC=180°
∴∠OAB=∠C=100°.
∵∠OEC=∠CBO+∠EOB=x+40°,
∠OBA=180°-∠OAB-∠AOB=180°-100°-x=80°-x,
∴x+40°=80°-x,
∴x=20°,
∴∠OEC=∠OBA=80°-20°=60°.
【点睛】
本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.
展开阅读全文