1、1.4.3正切函数的性质与图象教学目标:1、知识与技能:(1)用单位圆中的正切线作正切函数的图象;(2)用正切函数图象解决函数有关的性质;2、过程与方法:(1)理解并掌握作正切函数图象的方法;(2)理解用函数图象解决有关性质问题的方法,培养学生分析问题,解决问题的能力,培养学生数形结合的思想方法。(3)培养学生类比,归纳的数学思想方法3、情态与价值:培养认真学习的精神。 教学重点:用单位圆中的正切线作正切函数图象; 来源:学科网ZXXK教学难点:正切函数的性质。 教学过程:一、复习引入:问题:1、正弦曲线是怎样画的? 2、练习:画出下列各角的正切线: 来源:学科网ZXXK下面我们来作正切函数的
2、图象二、讲解新课: 1正切函数的定义域是什么? 2正切函数是不是周期函数? ,是的一个周期。 是不是正切函数的最小正周期?下面作出正切函数图象来判断。3作,的图象说明:(1)正切函数的最小正周期不能比小,正切函数的最小正周期是;(2)根据正切函数的周期性,把上述图象向左、右扩展,得到正切函数,且的图象,称“正切曲线”。y0x(3)正切曲线是由被相互平行的直线所隔开的无穷多支曲线组成的。来源:学科网4正切函数的性质 引导学生观察,共同获得:(1)定义域:;(2)值域:R 观察:当从小于,时, 当从大于,时,。(3)周期性:;(4)奇偶性:由知,正切函数是奇函数;(5)单调性:在开区间内,函数单调
3、递增。5.讲解范例:例1比较与的大小解:,内单调递增, 例2:求下列函数的周期:(1) 答:。 (2) 答:。说明:函数的周期例3:求函数的定义域、值域,指出它的周期性、奇偶性、单调性, 解:1、由得,所求定义域为2、值域为R,周期, 3、在区间上是增函数。思考1:你能判断它的奇偶性吗? (是非奇非偶函数),练习1:求函数的定义域、周期性、奇偶性、单调性。略解:定义域:值域:R 奇偶性:非奇非偶函数单调性:在上是增函数 练习2:教材P45面2、3、4、5、6题解:画出ytanx在(,)上的图象,在此区间上满足tanx0的x的范围为:0x结合周期性,可知在x R,且xk上满足的x的取值范围为(k,k)(kZ)思考2:你能用图象求函数的定义域吗?解:由 得 ,利用图象知,所求定义域为,0亦可利用单位圆求解。 0TA四、小结:本节课学习了以下内容:1.因为正切函数的定义域是,所以它的图象被等相互平行的直线所隔开,而在相邻平行线间的图象是连续的。2.作出正切函数的图象,也是先作出长度为一个周期(-/2,/2)的区间内的函数的图象,然后再将它沿x轴向左或向右移动,每次移动的距离是个单位,就可以得到整个正切函数的图象。五、作业来源:学科网ZXXK来源:学|科|网Z|X|X|K