资源描述
人教版四年级数学竞赛试题及答案
一、拓展提优试题
1.围棋24元一副,象棋18元一副,用300元恰好可以购买两种棋子共14副,其中象棋有 副.
2.(8分)有一棵神奇的树上长了123个果子,第一天会有1个果子从树上掉落,从第二天起,每天掉落的果子数量比前一天多1个,但如果某天树上的果子数量少于这一天应该掉落的数量时,那么这一天它又重新从掉落1个果子开始,按照规律进行新的一轮,如此继续,那么第 天树上的果子会都掉光.
3.一个三位数A的三个数字所组成的最大三位数与最小三位数的差仍是A,那么,这个数A等于几?
4.六个人传球,每两人之间至多传一次,那么这六个人最多共进行 15 次传球.
5.五个人站成一排,每个人戴一顶不同的帽子,编号为1、2、3、4、5.每人只能看到前面的人的帽子.小王一顶都看不到;小孔只看到4号帽子;小田没有看到3号帽子,但看到了1号帽子;小严看到了有3顶帽子,但没有看到3号帽子;小韦看到了3号帽子和2号帽子,小韦戴 号帽子.
6.豆豆全家有4口人.今年豆豆哥哥比豆豆大3岁,豆豆妈妈比豆豆爸爸小2岁.5年前,全家年龄为59岁,5年后,全家年龄和为97岁,豆豆妈妈今年 岁.
7.过元旦时,班委会用730元为全班同学每人买了一份价值17元的纪念品,剩余16元,那么,这个班共有学生 名.
8.如图是长方形,将它分成7部分,至少要画 条直线.
9.4名工人3小时可以生产零件108个,现在要在8小时内生产504个零件,需增加工人 名.
10.商店里有甲、乙、丙三筐苹果,丙筐内苹果的个数是甲筐内苹果的个数的2倍,若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果,则乙筐内原有苹果 个.
11.在一个停车场,共有24辆车,其中汽车是4个轮子,摩托车是3个轮子,这些车共有86个轮子,那么三轮摩托车有 辆.
12.若2台收割机3天可以收割小麦450亩,则用7台收割机收割2100亩小麦需要 天.
13.3年前,爸爸的年龄是明明年龄的8倍,在今年,爸爸的年龄是明明年龄的5倍,则爸爸今年 岁.
14.甲、乙二人从同一天开始工作,公司规定:甲每工作3天后休息1天,乙每工作7天后连续休息3天,则在开始的前1000天中,甲、乙同一天休息的日子有 天.
.
15.教室里有若干学生,他们的平均年龄是8岁.如果加上李老师的年龄,他们的平均年龄就是11岁.已知李老师的年龄是32岁.那么,教室里一共有 人.
16.(8分)如图所示,东东用35米长的栅栏在墙边围出一块梯形的地用来养猪,那么,这块养猪场的面积是 平方米.
17.有一笔钱,用来给四(1)班的学生每人买一个笔记本,若每本3元,则可多买6本;若每本5元,则差30元.若用完这笔钱,恰好给每人买一个笔记本,则共买笔记本 24 个,其中3元的笔记本 个.
18.(8分)杨树、柳树、槐树、桦树和梧桐树各一棵树种成一排,相邻两颗树之间的距离都是1米.杨树与柳树、槐树之间的距离相等,桦树与杨树、槐树之间的距离相等.那么梧桐树与桦树之间的距离是 米.
19.(8分)如图,在一个长、宽分别为19厘米和11厘米的大长方形内放了四个正方形,那么没有被正方形覆盖的小长方形(图中阴影部分)的面积是 平方厘米.
20.如图,将一张圆形纸片对折,再对折,又对折,…,到第六次对折后,得到的扇形的面积是5,那么,圆形纸片的面积是 .
21.某个学习小组由男生和女生共8位同学,其中女生比男生多,那么男生的人数可能是 .
22.今年,小军5岁,爸爸31岁,再过 年,爸爸的年龄是小军的3倍.
23.10个连续的自然数从小到大排列,若最后6个数的和比前4个数的和的2倍大15,则这10个数中最小的数是 .
24.如图,把一个边长是5cm的正方形纸片沿虚线分成5个长方形,然后按照箭头标记的方向移动其中的4个长方形,则所得图形的周长是 cm.
25.甲,乙两人分别从A,B两地同时出发,相向而行,甲到达A,B中点C时,乙距C点还有240米,乙到达C点时,甲已经超过C点360米,则两人在D点相遇时,CD的距离是 米.
26.有一个学生在做计算题时,最后一步应当除以20,但却错误地加上20,因而得到错误的结果是180.请问这道计算题的正确得数应是 .
27.某列车通过285米的隧道用24秒,通过245米的大桥用22秒.若该车与另一列长135米,速度为每秒10米的货车相遇,两列车从碰上到全错开用 秒.
28.把50颗巧克力分给4个小朋友,每个小朋友分得的巧克力的颗数各不相同.分得最多的小朋友至少可以得 颗巧克力.
29.如图,小明从A走到B再到C再到D,走了38米,小马从B到C再到D再到A,走了31米,此问长方形ABCD的周长多少米?
30.如果a 表示一个三位数,b表示一个两位数,那么,a+b最小是 a+b最大是 ,a﹣b最小是 ,a﹣b最大是 .
31.三个连续自然数的乘积是120,它们的和是 .
32.某冷饮店推出“夏日冰饮第二杯半价”活动,小刚买了2杯饮料共花了13元5角.那么一杯饮料的原价是 元.
33.小胖用两个秒表测一列火车的车速.他发现这列火车通过一座660米的大桥需要40秒,以同样的速度从他身边开过需要10秒,请你根据小胖提供的数据算出火车的车身长是 米.
34.学校组织春游,租船让学生划.每条船坐3人,有16人没有船坐;如果每条船坐5人,则有一条船上差4人.学校共有学生 人.
35.(7分)有一行数:1,1,2,3,5,8,13,21,…,从第三个数开始,每个数都是前两个数的和,问在前2007个数中,有 是偶数.
36.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成 种不同的含有64个小正方体的大正方体.
37.爸爸比儿子大24岁,今年爸爸的年龄是儿子的五倍, 年后爸爸的年龄是儿子的三倍.
38.定义运算:A△B=2A+B,已知(3△2)△x=20,x= .
39.粮店里有6袋面粉,分别重15、16、18、19、20、31千克,食堂分两次买走了其中5袋,已知第一次买走得重量是第二次的两倍,剩下的一袋重量为 千克.
40.空心圆和实心圆排成一行如下图所示:
○●○●●○●●●○●○●●○●●●○●○●●○●●●…
在前200个圆中有 个空心圆.
【参考答案】
一、拓展提优试题
1.【分析】假设全是围棋,那么就有24×14=336元,这就比已知的300元多出了336﹣300=36元,因为一副围棋比一副象棋多24﹣18=6元,由此即可求得象棋的数量.
解:假设全是围棋,则象棋就有:
(24×14﹣300)÷(24﹣18)
=36÷6
=6(副);
答:其中象棋有6副.
故答案为:6.
【点评】此题属于鸡兔同笼问题,解这类题的关键是用假设法进行分析,进而得出结论;也可以用方程进行解答.
2.解:因为1+2+3+4+5+6+7+8+9+10+11+12+13+14+15=120
当到第十六天时不够16个需要重新开始.1+2=3
即1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+1+2=123(个)
故答案为:17天
3.解:设组成三位数A的三个数字是a,b,c,且a>b>c,则最大的三位数是a×100+b×10+c,最小的三位数是c×100+b×10+a,
所以差是(a×100+b×10+c)﹣(c×100+b×10+a)=99×(a﹣c).
所以原来的三位数是99的倍数,可能的取值有198,297,396,495,594,693,792,891,
其中只有495符合要求,954﹣459=495.
答:这个三位数A是495..
4.解:一个图形中,如果有K个奇点,那么这个图形会用笔画出来.为了让这个图形用一笔画出来,则要使它只存在2个奇点.
上面的图形共有6个奇点,6×5÷2=15条线.最少可以去掉2条线(剩下13条线),使6个奇点变成2个奇点,就可以用一笔画出来了.
所以6人两两传球,但每两人之间最多只能传一次,最多就能传13次.
故答案为:13.
5.解:根据分析,首先从“小王一顶都看不到”判断出小王排在第一位的位置上;
然后从“小孔只看到4号帽子”判断出小孔排在第二的位置上;
接着从“小严看到了有3顶帽子”判断出小严在第四的位置上;
结合小田没看到3,小韦看到3对比可知小田在第三位,小韦在第五位;
由于第二位的小孔只看到4,所以小王的帽子编号为4;
由第三位的小田看到1,可知第二位的小孔的帽子编号为1;
因为第四位的小严没看到3,而第五位的小韦看到了3和2,
所以小田帽子编号为2,小严帽子编号为3,小韦帽子编号为5.
故答案是:5.
6.解:10×4﹣(97﹣59)
=40﹣38
=2(岁)
所以豆豆是3年前出生的,即今年豆豆应该是3岁,
今年豆豆的哥哥的年龄为:3+3=6(岁),
今年全家的年龄和为:97﹣5×4=77(岁),
今年爸爸妈妈的年龄和为:77﹣3﹣6=68(岁),
豆豆的妈妈今年的年龄为:(68﹣2)÷2=33(岁).
答:豆豆妈妈今年33岁.
故答案为:33.
7.【分析】根据题意,由减法的意义,用730元减去16元,求出全班同学每人买一份纪念品的总钱数,再根据数量=总价÷单价,代入数据解答即可.
解:(730﹣16)÷17
=714÷17
=42(名);
答:这个班共有学生42名.
故答案为:42.
【点评】解答此题的关键是求出全班同学每人买一份纪念品的总钱数,再根据单价、数量和总价之间的关系进行解答.
8.【分析】两条直线把正方形分成4部分,第三条直线与前两条直线相交多出3部分,共分成7部分;第四条直线与前3条直线相交,又多出4部分.共11部分,第五条直线与前4条直线相交,又多出5部分,如下图所示.
解:1+1+2+3=7
答:在一个长方形上画上3条直线,最多能把长方形分成7部分.
故答案为:3.
【点评】此题考查了图形的拆拼.使直线间相互交叉,交点越多,则分割的空间越多.每多第几条直线,就加几个部分.
9.解:504÷8÷(108÷3÷4)﹣4,
=504÷8÷9﹣4,
=63÷9﹣4,
=7﹣4,
=3(名),
答:需增加3名,
故应填:3.
10.【分析】根据题意“若从乙筐内拿出12个苹果放入甲筐,则此时甲筐内比丙筐内少24个苹果,乙筐内比丙筐内多6个苹果”则原来甲筐比丙筐少(12+24)=36个苹果,结合原来丙筐内苹果的个数是甲筐内苹果的个数的2倍,可以求出原来甲筐和丙筐苹果的数量,同时知道原来乙筐比丙筐多(6+12)个苹果,进而求出原来乙筐苹果的个数.
解:根据题意可知,
原来甲筐比丙筐少(12+24)=36个苹果,
且原来丙筐是甲筐个数的2倍,
则原来甲筐有:36÷(2﹣1)=36个,
原来丙筐有:36×2=72个,
原来乙筐有:72+(6+12)=90(个)
答:乙筐内原有苹果 90个.
故答案为:90.
【点评】此题考查了差倍问题,根据题意得出:原来甲筐比丙筐少(12+24)=36个苹果,原来乙筐比丙筐多(6+12)个苹果,是解答此题的关键.
11.解:假设24辆全是4个轮子的汽车,则三轮车有:
(24×4﹣86)÷(4﹣3),
=10÷1,
=10(辆),
答:三轮车有10辆.
故答案为:10.
12.【分析】首先求出每台每天的工作效率,再求出7台1天的工作效率,因为工作量÷工作效率=工作时间,据此解答即可.
解:2100÷(450÷3÷2×7)
=2100÷(75×7)
=2100÷525
=4(天),
答:用7台收割机收割2100亩小麦需要4天.
故答案为:4.
【点评】此题属于二次反归一问题,首先用连除求出单一量,再用除法求出部分量.
13.【分析】3年前,爸爸的年龄是父子年龄差的,今年后爸爸的年龄是年龄差的,共经过了3年,对应的分率是(),用除法可以求出父子的年龄差,进而可以求出爸爸今年的年龄.据此解答.
解:3÷()
=3÷()
=3×
=28(岁)
28×=35(岁)
答:爸爸今年35岁.
故答案为:35.
【点评】父子年龄差是个不变的量,而年龄的倍数却年年不同.我们可以抓住“差不变”这个特点,再根据父子年龄之间的倍数关系与年龄之和等条件解答这类应用题.
14.【分析】甲的休息天数为4的倍数,即4,8,12,…1000;乙的休息日为:8,9,10,18,19,20,…,那么甲只要在4的倍数天休息就行了,
每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期,
每一周期有一天重合,那么100周期共有100天重合解:甲的休息天数为4的倍数,即4,8,12,…1000;
乙的休息日为:8,9,10,18,19,20,…,那么乙只要在4的倍数天休息就行了,
每三个数中有一个数是4的倍数,那么也就是说,乙每工作10天才会有1天与喜羊羊的重合,那么以10为周期,共有1000÷10=100个周期
每一周期有一天重合,那么100周期共有100天重合.
故答案为:100.
【点评】本题主要考查了公约数与公倍数问题.关键是乙每工作10天才会有1天与甲的重合.
15.解:(32﹣11)÷(11﹣8)+1
=21÷3+1
=8(人)
答:教室里一共有 8人.
故答案为:8.
16.解:(35﹣7)×7÷2
=28×7÷2
=98(平方米)
答:这块养猪场的面积是 98平方米.
故答案为:98.
17.【分析】若每本3元,则多3×6=18元,则总人数为(18+30)÷(5﹣3)=24人,总钱数有5×24﹣30=90元,进而可得结论.
解:由题意得若每本3元,则多3×6=18元,则总人数为(18+30)÷(5﹣3)=24人,总钱数有5×24﹣30=90元,
若钱用完刚好买24本,则3元的笔记本有(24×5﹣90)÷(5﹣3)=15个,
故答案为24,15.
【点评】本题考查分配盈亏问题,考查学生的计算能力,属于中档题.
18.解:杨树与柳树、槐树之间的距离相等,所有三种树的位置有可能是:柳□杨□槐,柳杨槐□□,□柳杨槐□,□□柳杨槐,其中□表示暂时不知道.
而桦树与杨树、槐树之间的距离相等,所以只有可能是:柳□杨桦槐,剩余的一个位置是梧桐树,
所以梧桐树和桦树间的距离是2米.
故答案为:2.
19.解:最大正方形的边长是11厘米,
次大正方形的边长:19﹣11=8(厘米)
最小正方形的边长是:11﹣8=3(厘米)
阴影长方形的长是3厘米,
宽是8﹣3﹣3=2(厘米)
3×2=6(平方厘米)
答:没有被正方形覆盖的小长方形(图中阴影部分)的面积是 6平方厘米.
故答案为:6.
20.【分析】把这张圆形纸片对折1次,折成的角是以这张圆形纸片的圆心为顶点,两条半径为边的平角,平角=180°,再对折1次,就是把平角平均分成2分,每份是90°,再对折1次,就是把90°的角再平均分成2份,每份是45°,第六次对折后,平均分成了(2×2×2×2×2×2)=64份,得到的扇形的面积是圆面积的;由此解答即可.
解:5=320
答:圆形纸片的面积是320;
故答案为:320.
【点评】本题是考查简单图形的折叠问题,明确把圆对折6次后,得到的图形的面积是圆面积的.
21.【分析】先假设男生和女生一样多,则男生有4人,女生有4人,因为女生比男生多,所以男生的人数一定小于4人,然后写出即可.
解:8÷2=4(人),
因为女生比男生多,所以男生的人数一定小于4人,
所以男生可能是1人,2人或3人;
故答案为:1人,2人或3人.
【点评】解答此题的关键:先假设男、女生一样多,求出男生人数,进而根据题意,进行分析、继而得出结论.
22.【分析】根据“今年,小军5岁,爸爸31岁”求出父子的年龄差是(31﹣5)岁,由于此年龄差不会改变,倍数差是3﹣1=2,所以利用差倍公式,求出当父亲年龄是儿子年龄的3倍时儿子的年龄,由此进一步解决问题.
解:父子年龄差是:31﹣5=26(岁),
爸爸的年龄是小军的3倍时,
小军的年龄是:26÷(3﹣1)
=26÷2
=13(岁),
13﹣5=8(年),
答:再过8年,爸爸的年龄是小军的3倍.
故答案为:8.
【点评】解答此题的关键是根据两人的年龄差不会随着时间的改变而变化,利用差倍公式求出儿子相应的年龄,由此解决问题.差倍问题的关系式:数量差÷(倍数﹣1)=1倍数(较小数),1倍数(较小数)×倍数=几倍数(较大数).
23.【分析】本题主要考察等差数列.
解:设最小的数为x,则剩余自然数依次为x+1,x+2,…,x+9,
由题可得2(4x+1+2+3)+15=6x+4+5+6+7+8+9,
化简后是8x+27=6x+39
∴x=6,
【点评】本题可以借助列方程,设最小的数为x,一一用x表示其他连续自然数,根据等量关系就可求解.
24.【分析】本题考察图形边长的平移.
解:画出移动后的图,
所得图形的周长是5×2+(5+1×2+2×2+3×2+4×2+5)=10+30=40cm.
【点评】本题主要抓住平移后的图形每条边边长为多少即可求解.
25.【分析】由题目中的已知条件,得出甲乙的速度比,进而又得出他们的路程比,这样求出甲到达中点后再与乙共行240米,甲行的路程即CD之间的距离.
解:由题意知“甲走360米时乙正好走240米”,甲、乙的速度比是360:240=3:2
相同时间内,甲、乙的路程比等于他们的速度比即3:2
甲乙共行240米,甲行的路程是240×3÷(2+3)=144(米)
故:CD的距离是144米.
【点评】解此题的突破口就是能得出他们的速度比,之后就可轻松解答了.
26.解:设最后一步之前运算的结果是a,
a+20=180,
那么:a=180﹣20=160;
正确的计算结果是:a÷20=160÷20=8;
故答案为:8.
27.解:列车速度为:
(285﹣245)÷(24﹣22)
=40÷2,
=20(米);
列车车身长为:
20×24﹣285
=480﹣285,
=195(米);
列车与货车从相遇到离开需:
(195+135)÷(20+10),
=330÷30,
=11(秒).
答:列车与货车从相遇到离开需11秒.
28.解:因为要使每个小朋友分得的巧克力的颗数各不相同,第一次先分给这4个小朋友的巧克力数依次为:1、2、3、4,从这里可以看出最后那个人是分得鲜花最多的人;
那么还剩下50﹣(1+2+3+4)=40颗巧克力;如果这40颗巧克力全给最后这个人,
那么他最多可分得4+40=44颗,
要想让他分得的巧克力数少,那么剩下的40颗朵,可以再分给每个人10,
由此可得出这时每个人的巧克力数为:11、12、13、14,
答:分得最多的小朋友至少可以得14颗巧克力;
故答案为:14.
29.解:长方形长比宽多:38﹣31=7(米),
长方形宽:(38﹣7×2)÷3,
=24÷3,
=8(米),
长:8+7=15(米),
(15+8)×2,
=23×2,
=46(米),
答:长方形ABCD的周长46米.
30.【分析】两个数越大,和就大,越小和就小,两个数越接近差越小,反之差就大,所以根据条件找出最大与最小的三位数与二位数,计算即可解答.
解:a+b最小是10+100=110,
a+b最大是99+999=1098,
a﹣b最小是100﹣99=1,
a﹣b最大是999﹣10=989.
故答案为:110,1098,1,989.
【点评】本题主要考查最大与最小问题,解题关键是知道最小的三位数是100,最大的三位数是999,最小的二位数是10,最大的二位数是99.
31.【分析】首先把120分解质因数,把质因数分作三组,使各组数字相乘后的结果是三个连续的自然数,即可得解.
解:120=2×2×2×3×5=(2×2)×(2×3)×5,
2×2=4,2×3=6,5,
即,三个连续自然数的乘积是120,这三个数是4、5、6,
所以,和是:4+5+6=15.
故答案为:15.
【点评】本题考查了灵活应用合数分解质因数来解决较复杂问题.
32.【分析】把第一杯饮料的原价看作单位“1”,则第二杯饮料的价钱是第一杯的,由题意可知:第一杯饮料价钱的(1+)是13.5元,根据已知一个数的几分之几是多少,求这个数,用除法解答.
解:13.5÷(1+),
=13.5÷1.5,
=9(元);
答:一杯饮料的原价是9元;
故答案为:9.
【点评】解答此题的关键是:判断出单位“1”,进而根据已知一个数的几分之几是多少,求这个数,用除法解答.
33.解:根据分析可得,
660÷(40﹣10),
=660÷30,
=22(米);
22×10=220(米);
答:火车的车身长是 220米.
故答案为:220.
34.解:船:(16+4)÷(5﹣3),
=20÷2,
=10(条);
学生:3×10+16=46(人);
答:学校共有学生46人.
故答案为:46.
35.【分析】因为前两个数相加得偶数,即奇数+奇数=偶数;同理,第四个数是:奇数+偶数=奇数,以此类推,总是奇数、奇数、偶数、奇数、奇数、偶数…;每三个数一个循环周期,然后确定2007个数里面有几个循环周期,再结合余数,即可得出偶数的个数.
解:2007÷3=669,
又因为,每一个循环周期中有2个奇数,1个偶数,
所以前2007个数中偶数的个数是:1×669=669;
答:前2007个数中,有699是偶数.
故答案为:699.
36.【分析】一共64个,4×4×4,①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;然后把几种情况的种数相加即可.
解:①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;
共:1+2+4+8=15(种);
答:一共可以拼成15种不同的含有64个小正方体的大正方体.
故答案为:15.
37.解:根据题意,由差倍公式可得:
今年爸爸的年龄是儿子的五倍时,儿子的年龄是:24÷(5﹣1)=6(岁);
爸爸的年龄是儿子的三倍时,儿子的年龄是:24÷(3﹣1)=12(岁);
12﹣6=6(年).
答:6年后爸爸的年龄是儿子的三倍.
故答案为:6.
38.解:(3△2)△x=20,
(2×3+2)△x=20,
8△x=20,
2×8+x=20,
16+x=20,
x=20﹣16,
x=4;
故答案为:4.
39.解:15+16+18+19+20+31=119(千克),
食堂共买走的总量是:119﹣20=99(千克),
99÷3=33(千克),
第二次买走得重量是:15+18=33(千克),
第一次买走得重量是:16+31+19=66(千克);
答:剩下的一袋重量为20千克.
故答案为:20.
40.解:200÷9=22…2,
所以22×3+1=67(个),
答:前200个圆中有67个空心圆.
故答案为:67.
展开阅读全文