1、10.1.3 古典概型A基础达标1(2019高考全国卷)生物实验室有5只兔子,其中只有3只测量过某项指标若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A.B.C. D.解析:选B.设3只测量过某项指标的兔子为A,B,C,另2只兔子为a,b,从这5只兔子中随机取出3只,则样本点共有10种,分别为(A,B,C),(A,B,a),(A,B,b),(A,C,a),(A,C,b),(A,a,b),(B,C,a),(B,C,b),(B,a,b),(C,a,b),其中“恰有2只测量过该指标”的取法有6种,分别为(A,B,a),(A,B,b),(A,C,a),(A,C,b),(B,C,a),
2、(B,C,b),因此所求的概率为,选B.2(2019高考全国卷)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A. B.C. D.解析:选D.将两位男同学分别记为A1,A2,两位女同学分别记为B1,B2,则四位同学排成一列,情况有A1A2B1B2,A1A2B2B1,A2A1B1B2,A2A1B2B1,A1B1A2B2,A1B2A2B1,A2B1A1B2,A2B2A1B1,B1A1A2B2,B1A2A1B2,B2A1A2B1,B2A2A1B1,A1B1B2A2,A1B2B1A2,A2B1B2A1,A2B2B1A1,B1B2A1A2,B1B2A2A1,B2B1A1A2,B2B1A
3、2A1,B1A1B2A2,B1A2B2A1,B2A1B1A2,B2A2B1A1,共有24种,其中2名女同学相邻的有12种,所以所求概率P,故选D.3(2019福建省三明市质量检测)同时投掷两个骰子,向上的点数分别记为a,b,则方程2x2axb0有两个不等实根的概率为()A. B.C. D.解析:选B.因为方程2x2axb0有两个不等实根,所以a28b0,又同时投掷两个骰子,向上的点数分别记为a,b,则共包含36个样本点,满足a28b0的有(6,1),(6,2),(6,3),(6,4),(5,1),(5,2),(5,3),(4,1),(3,1)共9个样本点,所以方程2x2axb0有两个不等实根的
4、概率为.故选B.4某部三册的小说,任意排放在书架的同一层上,则各册从左到右或从右到左恰好为第1,2,3册的概率为()A. B.C. D.解析:选B.所有样本点为(1,2,3),(1,3,2),(2,1,3),(2,3,1),(3,1,2),(3,2,1)其中从左到右或从右到左恰好为第1,2,3册包含2个样本点,所以P.故选B.5(2019河北省沧州市期末考试)定义:abcde10 000a1 000b100c10de,当五位数abcde满足abde时,称这个五位数为“凸数”由1,2,3,4,5组成的没有重复数字的五位数共120个,从中任意抽取一个,则其恰好为“凸数”的概率为()A. B.C.
5、D.解析:选D.由题意,由1,2,3,4,5组成的没有重复数字的五位数恰好为“凸数”的有:12543,13542,14532,23541,24531,34521,共6个样本点,所以恰好为“凸数”的概率为P.故选D.6(2019湖北省四地七校联考)掷两颗均匀的骰子,则点数之和为6的概率等于_解析:掷两颗均匀的骰子,共有36个样本点,点数之和为6的样本点有(1,5),(2,4),(3,3),(4,2),(5,1)这五种,因此所求概率为.答案:7(2019广西钦州市期末考试)在某学校图书馆的书架上随意放着编号为1,2,3,4,5的五本书,若某同学从中任意选出2本书,则选出的2本书编号相连的概率为_解
6、析:从五本书中任意选出2本书的所有可能情况为(1,2)、(1,3)、(1,4)、(1,5)、(2,3)、(2,4)、(2,5)、(3,4)、(3,5)、(4,5)共10种,满足2本书编号相连的所有可能情况为(1,2)、(2,3)、(3,4)、(4,5)共4种,故选出的2本书编号相连的概率为.答案:8某城市有8个商场A,B,C,D,E,F,G,H和市中心O排成如图所示的格局,其中每个小方格为正方形,某人从网格中随机地选择一条最短路径,欲从商场A前往商场H,则他经过市中心O的概率为_解析:此人从商场A前往商场H的所有最短路径有ABCEH,ABOEH,ABOGH,ADOEH,ADOGH,ADFGH,
7、共6条,其中经过市中心O的有4条,所以所求概率为.答案:9(2019广西钦州市期末考试)将一颗质地均匀的骰子先后抛掷2次,观察向上的点数,并分别记为x,y.(1)若记“xy5”为事件A,求事件A发生的概率;(2)若记“x2y210”为事件B,求事件B发生的概率解:将一颗质地均匀的骰子抛掷1次,它的点数有1、2、3、4、5、6这6种结果,抛掷第2次,它的点数有1、2、3、4、5、6这6种结果,因为骰子共抛掷2次,所以共有6636种结果. (1)事件A发生的样本点有(1,4)、(2,3)、(4,1)、(3,2)共4种结果, 所以事件A发生的概率为P(A).(2)事件B发生的样本点有(1,1)、(1
8、,2)、(1,3)、(2,1)、(2,2)、(3,1)共6种结果,所以事件B发生的概率为P(B) .10某市举行职工技能比赛活动,甲厂派出2男1女共3名职工,乙厂派出2男2女共4名职工(1)若从甲厂和乙厂报名的职工中各任选1名进行比赛,求选出的2名职工性别相同的概率;(2)若从甲厂和乙厂报名的这7名职工中任选2名进行比赛,求选出的这2名职工来自同一工厂的概率解:记甲厂派出的2名男职工为A1,A2,1名女职工为a;乙厂派出的2名男职工为B1,B2,2名女职工为b1,b2.(1)从甲厂和乙厂报名的职工中各任选1名,不同的结果有(A1,B1),(A1,B2),(A1,b1),(A1,b2),(A2,
9、B1),(A2,B2),(A2,b1),(A2,b2),(a,B1),(a,B2),(a,b1),(a,b2),共12种其中选出的2名职工性别相同的选法有(A1,B1),(A1,B2),(A2,B1),(A2,B2),(a,b1),(a,b2),共6种故选出的2名职工性别相同的概率P.(2)若从甲厂和乙厂报名的这7名职工中任选2名,不同的结果有(A1,A2),(A1,a),(A1,B1),(A1,B2),(A1,b1),(A1,b2),(A2,a),(A2,B1),(A2,B2),(A2,b1),(A2,b2),(a,B1),(a,B2),(a,b1),(a,b2),(B1,B2),(B1,b
10、1),(B1,b2),(B2,b1),(B2,b2),(b1,b2),共21种其中选出的2名职工来自同一工厂的选法有(A1,A2),(A1,a),(A2,a),(B1,B2),(B1,b1),(B1,b2),(B2,b1),(B2,b2),(b1,b2),共9种故选出的2名职工来自同一工厂的概率为P.B能力提升11古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木、木克土、土克水、水克火、火克金”从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为()A. B.C. D.解析:选C.从五种不同属性的物质中随机抽取两种,有(金,木)、(金,水)、(金,火)、(金,土)
11、、(木,水)、(木,火)、(木,土)、(水,火)、(水,土)、(火,土)共10种等可能发生的结果,其中金克木,木克土,土克水,水克火,火克金,即相克的有5种,则不相克的也是5种,所以抽取的两种物质不相克的概率为.12(2019江西省上饶市期末统考)图1和图2中所有的正方形都全等,图1中的正方形放在图2中的某一位置,所组成的图形能围成正方体的概率是()A. B.C. D1解析:选A.由题意,可得样本点的总数为n4,又由题图1中的正方形放在题图2中的处时,所组成的图形不能围成正方体;题图1中的正方形放在题图2中的处的某一位置时,所组成的图形能围成正方体,所以将题图1中的正方形放在题图2中的的某一位
12、置,所组成的图形能围成正方体的概率为P.故选A.13设a是从集合1,2,3,4中随机取出的一个数,b是从集合1,2,3中随机取出的一个数,构成一个样本点(a,b)记“这些样本点中,满足logba1”为事件E,则E发生的概率是_解析:事件E发生包含的样本点是分别从两个集合中取一个数字,共有12种结果,满足条件的样本点是满足logba1,可以列举出所有的样本点,当b2时,a2,3,4,当b3时,a3,4,共有325个,所以根据古典概型的概率公式得到概率是.答案:14某校从高二甲、乙两班各选出3名学生参加书画比赛,其中从高二甲班选出了1名女同学、2名男同学,从高二乙班选出了1名男同学、2名女同学(1
13、)若从这6名同学中抽出2名进行活动发言,写出所有可能的结果,并求高二甲班女同学、高二乙班男同学至少有一人被选中的概率;(2)若从高二甲班和乙班各选1名同学现场作画,写出所有可能的结果,并求选出的2名同学性别相同的概率解:(1)设选出的3名高二甲班同学为A,B,C,其中A为女同学,B,C为男同学,选出的3名高二乙班同学为D,E,F,其中D为男同学,E,F为女同学从这6名同学中抽出2人的所有可能结果有(A,B),(A,C),(A,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种其中高二甲班
14、女同学、高二乙班男同学至少有一人被选中的可能结果有(A,B),(A,C),(A,D),(A,E),(A,F),(B,D),(C,D),(D,E),(D,F),共9种,故高二甲班女同学、高二乙班男同学至少有一人被选中的概率P.(2)高二甲班和乙班各选1名的所有可能结果为(A,D),(A,E),(A,F),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),共9种,选出的2名同学性别相同的有(A,E),(A,F),(B,D),(C,D),共4种,所以选出的2名同学性别相同的概率为.C拓展探究15在某亲子游戏结束时有一项抽奖活动,抽奖规则是:盒子里面共有4个小球,小球上分别写有0
15、,1,2,3的数字,小球除数字外其他完全相同,每对亲子中,家长先从盒子中取出一个小球,记下数字后将小球放回,孩子再从盒子中取出一个小球,记下小球上数字将小球放回若取出的两个小球上数字之积大于4,则奖励飞机玩具一个;若取出的两个小球上数字之积在区间1,4上,则奖励汽车玩具一个;若取出的两个小球上数字之积小于1,则奖励饮料一瓶(1)求每对亲子获得飞机玩具的概率;(2)试比较每对亲子获得汽车玩具与获得饮料的概率,哪个更大?请说明理由解:样本空间(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3)共16个样本点(1)记“获得飞机玩具”为事件A,事件A包含的样本点有(2,3),(3,2),(3,3)共3个故每对亲子获得飞机玩具的概率为P(A).(2)记“获得汽车玩具”为事件B,记“获得饮料”为事件C.事件B包含的样本点有(1,1),(1,2),(1,3),(2,1),(2,2),(3,1)共6个所以P(B),事件C包含的样本点有(0,0),(0,1),(0,2),(0,3),(1,0),(2,0),(3,0)共7个,所以P(C).所以P(B)P(C),即每对亲子获得饮料的概率大于获得汽车玩具的概率- 7 -