收藏 分销(赏)

2019_2020学年新教材高中数学第十章概率10.2事件的相互独立性应用案巩固提升新人教A版必修第二册.doc

上传人:二*** 文档编号:4494872 上传时间:2024-09-25 格式:DOC 页数:7 大小:2.45MB
下载 相关 举报
2019_2020学年新教材高中数学第十章概率10.2事件的相互独立性应用案巩固提升新人教A版必修第二册.doc_第1页
第1页 / 共7页
本文档共7页,全文阅读请下载到手机保存,查看更方便
资源描述
10.2 事件的相互独立性 [A 基础达标] 1.坛子中放有3个白球,2个黑球,从中进行不放回地取球两次,每次取一球,用A1表示第一次取得白球,A2表示第二次取得白球,则A1和A2是(  ) A.互斥事件       B.相互独立事件 C.对立事件 D.不相互独立的事件 解析:选D.因为P(A1)=,若A1发生了,P(A2)==;若A1不发生,P(A2)=,所以A1发生的结果对A2发生的结果有影响,所以A1与A2不是相互独立事件. 2.某人提出一个问题,甲先答,答对的概率为0.4,如果甲答错,由乙答,答对的概率为0.5,则问题由乙答对的概率为(  ) A.0.2    B.0.8    C.0.4    D.0.3 解析:选D.由相互独立事件同时发生的概率可知,问题由乙答对的概率为P=0.6×0.5=0.3,故选D. 3.某种开关在电路中闭合的概率为p,现将4只这种开关并联在某电路中(如图所示),若该电路为通路的概率为,则p=(  ) A. B. C. D. 解析:选B.因为该电路为通路的概率为,所以该电路为不通路的概率为1-,只有当并联的4只开关同时不闭合时该电路不通路,所以1-=(1-p)4,解得p=或p=(舍去).故选B. 4.(2019·重庆检测)荷花池中,有一只青蛙在成品字形的三片荷叶上跳来跳去(每次跳跃时,均从一片荷叶跳到另一片荷叶),而且逆时针方向跳的概率是顺时针方向跳的概率的两倍,如图所示.假设现在青蛙在A荷叶上,则跳三次之后停在A荷叶上的概率是(  ) A. B. C. D. 解析:选A.由已知得逆时针跳一次的概率为,顺时针跳一次的概率为,则逆时针跳三次停在A上的概率为P1=××=,顺时针跳三次停在A上的概率为P2=××=.所以跳三次之后停在A上的概率为P=P1+P2=+=. 5.有一道数学难题,学生A解出的概率为,学生B解出的概率为,学生C解出的概率为.若A,B,C三人独立去解答此题,则恰有一人解出的概率为(  ) A.1 B. C. D. 解析:选C.一道数学难题,恰有一人解出,包括: ①A解出,B,C解不出,概率为××=; ②B解出,A,C解不出,概率为××=; ③C解出,A,B解不出,概率为××=. 所以恰有1人解出的概率为++=. 6.有甲、乙两批种子,发芽率分别为0.8和0.9,在两批种子中各取一粒,则恰有一粒种子能发芽的概率是________. 解析:所求概率P=0.8×0.1+0.2×0.9=0.26. 答案:0.26 7.在如图所示的电路图中,开关a,b,c闭合与断开的概率都是,且是相互独立的,则灯亮的概率是________. 解析:设“开关a,b,c闭合”分别为事件A,B,C,则灯亮这一事件为ABC∪AB∪A C,且A,B,C相互独立, ABC,AB,A C相互独立, ABC,AB,A C互斥,所以 P=P(ABC)+P(AB)+P(AC) =P(A)P(B)P(C)+P(A)P(B)P()+P(A)P()P(C) =××+××+××=. 答案: 8.某大街在甲、乙、丙三处设有红绿灯,汽车在这三处因遇绿灯而通行的概率分别为,,,则汽车在这三处因遇红灯或黄灯而停车一次的概率为________. 解析:分别设汽车在甲、乙、丙三处通行的事件为A,B,C, 则P(A)=,P(B)=,P(C)=, 停车一次为事件(BC)∪(AC)∪(AB), 故其概率P=××+××+××=. 答案: 9.某学生语、数、英三科考试成绩在一次考试中排名全班第一的概率为语文为0.9,数学为0.8,英语为0.85,求在一次考试中: (1)三科成绩均未获得第一名的概率是多少? (2)恰有一科成绩未获得第一名的概率是多少? 解:分别记该学生语、数、英考试成绩排名全班第一的事件为A,B,C,则A,B,C两两互相独立, 且P(A)=0.9,P(B)=0.8,P(C)=0.85. (1)“三科成绩均未获得第一名”可以用 表示, P( )=P()P()P() =[1-P(A)][1-P(B)][1-P(C)] =(1-0.9)(1-0.8)(1-0.85) =0.003, 即三科成绩均未获得第一名的概率是0.003. (2)“恰有一科成绩未获得第一名”可以用 (BC)∪(AC)∪(AB)表示. 由于事件BC,AC和AB两两互斥, 根据概率加法公式和相互独立事件的意义,所求的概率为P(BC)+P(AC)+P(AB) =P()P(B)P(C)+P(A)P()P(C)+P(A)P(B)P() =[1-P(A)]P(B)P(C)+P(A)[1-P(B)]P(C)+P(A)P(B)[1-P(C)] =(1-0.9)×0.8×0.85+0.9×(1-0.8)×0.85+0.9×0.8×(1-0.85)=0.329, 即恰有一科成绩未获得第一名的概率是0.329. 10.某田径队有三名短跑运动员,根据平时训练情况统计甲、乙、丙三人100 m跑(互不影响)的成绩在13 s内(称为合格)的概率分别为,,,若对这三名短跑运动员的100 m跑的成绩进行一次检测,则 (1)三人都合格的概率; (2)三人都不合格的概率; (3)出现几人合格的概率最大. 解:记“甲、乙、丙三人100 m跑成绩合格”分别为事件A,B,C,显然事件A,B,C相互独立, 则P(A)=,P(B)=,P(C)=. 设恰有k人合格的概率为Pk(k=0,1,2,3), (1)三人都合格的概率为 P3=P(ABC)=P(A)·P(B)·P(C)=××=. (2)三人都不合格的概率为 P0=P()=P()·P()·P()=××=. (3)恰有两人合格的概率为 P2=P(AB)+P(A C)+P(BC) =××+××+××=. 恰有一人合格的概率为 P1=1-P0-P2-P3=1---==. 综合(1)(2)(3)可知P1最大. 所以出现恰有1人合格的概率最大. [B 能力提升] 11.端午节放假,甲回老家过节的概率为,乙、丙回老家过节的概率分别为,.假定三人的行动相互之间没有影响,那么这段时间内至少有1人回老家过节的概率为(  ) A. B. C. D. 解析:选B.“甲、乙、丙回老家过节”分别记为事件A,B,C,则P(A)=,P(B)=,P(C)=,所以P()=,P()=,P()=.由题知A,B,C为相互独立事件,所以三人都不回老家过节的概率P()=P()P()P()=××=,所以至少有1人回老家过节的概率P=1-=. 12.如图,已知电路中4个开关闭合的概率都是,且是互相独立的,则灯亮的概率为(  ) A. B. C. D. 解析:选C.记“A,B,C,D四个开关闭合”分别为事件A,B,C,D,可用对立事件求解,图中含开关的三条线路同时断开的概率为P()P()[1-P(AB)]=××=.所以灯亮的概率为1-=. 13.事件A,B,C相互独立,如果P(AB)=,P(C)=,P(AB)=,则P(B)=________,P(B)=________. 解析:由题意可得 解得P(A)=,P(B)=,P(C)=, 所以P(B)=P()·P(B)=×=. 答案:  14.在社会主义新农村建设中,某市决定在一个乡镇投资农产品加工、绿色蔬菜种植和水果种植三个项目,据预测,三个项目成功的概率分别为、、,且三个项目是否成功互相独立. (1)求恰有两个项目成功的概率; (2)求至少有一个项目成功的概率. 解:(1)只有农产品加工和绿色蔬菜种植两个项目成功的概率为 ××(1-)=, 只有农产品加工和水果种植两个项目成功的概率为 ×(1-)×=, 只有绿色蔬菜种植和水果种植两个项目成功的概率为 (1-)××=, 所以恰有两个项目成功的概率为++=. (2)三个项目全部失败的概率为 (1-)×(1-)×(1-)=, 所以至少有一个项目成功的概率为1-=. [C 拓展探索] 15.甲、乙两人各进行一次射击,如果两人击中目标的概率都是0.8,计算: (1)两人都击中目标的概率; (2)其中恰有一人击中目标的概率; (3)至少有一人击中目标的概率. 解:记“甲射击一次,击中目标”为事件A,“乙射击一次,击中目标”为事件B.“两人都击中目标”是事件AB;“恰有1人击中目标”是A∪B;“至少有1人击中目标”是AB∪A∪B. (1)“两人各射击一次,都击中目标”就是事件AB,又由于事件A与B相互独立. 所以P(AB)=P(A)·P(B)=0.8×0.8=0.64. (2)“两人各射击一次,恰好有一人击中目标”包括两种情况:一种是甲击中乙未击中(即A),另一种是甲未击中乙击中(即B).根据题意,这两种情况在各射击一次时不可能同时发生,即事件A与B是互斥的,所以所求概率为P=P(A)+P(B)=P(A)·P()×P()·P(B)=0.8×(1-0.8)+(1-0.8)×0.8=0.16+0.16=0.32. (3)“两人各射击一次,至少有一人击中目标”的概率为P=P(AB)+[P(A)+P(B)]=0.64+0.32=0.96. - 7 -
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服