1、等腰三角形的判定等腰三角形的判定我们在前面学习了等我们在前面学习了等腰三角形的性质。现腰三角形的性质。现在你能回答我一些问在你能回答我一些问题吗?题吗?1.1.等腰三角形的等腰三角形的 ;等腰三角形有哪些特征呢?等腰三角形有哪些特征呢?A AB BC C2.2.等腰三角形的两个底角相等等腰三角形的两个底角相等,(简称(简称“”););3.3.等腰三角形顶角的平分线、等腰三角形顶角的平分线、底边上的中线和底边上的高互底边上的中线和底边上的高互相重合。(简称相重合。(简称“”)4.等腰三角形是等腰三角形是 ,对对称轴是称轴是 。两腰相等两腰相等 等边对等角等边对等角三线合一三线合一轴对称图形轴对称
2、图形底边的中垂线底边的中垂线等腰三角形性质定理的逆命题是什么?等角对等边 逆命题是:如果一个三角形有两个角相等,那么这两个角所对的边也相等已知:如图ABC中,若B=C,求证AB=AC等腰三角形判定定理:几何语言表示如下:ABC中,B=CAB=AC如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”)例1:如图在ABC中,D、E分别是AC,AB边上的点,BD与CE交于点O,给出下列四个条件:EBO=DCO;BEO=CDO;BE=CD;BO=C0上述四个条件中,那两个条件可以判断ABC是等腰三角形?例2:快速判断下列三角形ABC是否为等腰三角形?(先判断,在简要说明理由)1
3、、下列命题是假命题的是()A.有两个内角是70与40 的三角形是等腰三角形B.一个外角的平分线平行于一边的三角形是等腰三角形C有两个不同顶点处的外角相等的三角形是等腰三角形D有两个内角不等的三角形不是等腰三角形2、在ABC,a,b,c分别是A、B、C的对边,且满足下列条件,A:B:C=3:4:5,a:b:c=3:2:,a2-b2+ac-bc=0,A:B:C=1:1:2,a:b:c=1::2,则能判定ABC为等腰三角 。3、如图在RtABC中,ACB=90,BAC的平分线AD交BC于点D,DEAC,DE交AB于点E,M为BE的中点,连接DM.在不添加任何辅助线和字母的情况下,图中的等腰三角形有
4、4、点E、F在BC上,BE=CF,A=D,B=C,AF与DE交于点O,(1)求证AB=DC(2)试判断OEF的形状,并说明理由。5、已知,如图在等边三角形ABC的AC边上取中点D,在的延长线上取一点E,使CE=CD,试判断BDE的形状?6、如图,在三角形ABC中,AB=AC,A=36,你能把ABC分成三个等腰三角形吗?(提供两种以上不同的作图方案)7、如图,ABAC,点D是ABC和ACB的角平分线的交点(1)请问图中有哪几个等腰三角形?(2)若过点D作EFBC,分别交AB、AC于点E、F,现在有几个等腰三角形?(3)线段EF与线段BE、CF有何数量关系?你能说明理由吗?(4)若AB4,求AEF
5、的周长变式1:如图,ABC中,点D是ABC和ACB的邻补角ACG的平分线的交点,仍过D作EFBC,分别交ABAC于点EF,此时线段EF、BE、CF之间有何数量关系?请说明理由。变式2:如图,若过ABC的两个外角平分线的交点作这两个角的公共边的平行线,则EF与BE,CF三者又有何数量关系?请说明理由。8、如图,四边形OABC是矩形,点A,C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P在BC边上运动,当ODP是腰长为5的等腰三角形时,点P的坐标为_ P1(2.5,4)P2(3,4)P3(2,4)P4(8,4)9、已知反比例函数 的图像经过点A(2,1),一次函数y=kx+b的图
6、象经过点C(0,3)与点A,且与反比例函数的图象相交于另一点B。分别求出反比例函数与一次函数的解析式。9、已知反比例函数 的图像经过点A(2,1),一次函数y=kx+b的图象经过点C(0,3)与点A,且与反比例函数的图象相交于另一点B。在x轴上是否存在一点P,使OAP为等腰三角形,若存在,直接写出点P的坐标;若不存在,请说明理由。P(-4,0)P(,0)P(-,0)P(,0)所有的三角形都是等腰三角形?!1操作得到的结论Idea证明等腰三角形的 性质定理和判定定理 Idea发现证明思路(作辅助线的方法)Idea逆过来证明过程(怎么写)2操作过程3证明思路(怎么想)学有所获学有所获五.布置作业:
7、课本第91页习题第1题;第2题;.第97页第8题改编题如图,在ABC中,D是BC的中点,DEAB,DFAC,E、F是垂足,DEDF,求证:ABAC,我们在上一节学习了我们在上一节学习了等腰三角形的性质。等腰三角形的性质。现在你能回答我一些现在你能回答我一些问题吗?问题吗?例1:如图在ABC中,D、E分别是AC,AB边上的点,BD与CE交于点O,给出下列四个条件:EBO=DCO;BE=CD;上述四个条件中,那两个条件可以判断ABC是等腰三角形?EBO=DCO;BE=CD;EOB=DOCBOECOD(AAS)OE=ODCE=BDABDACE(AAS)AB=AC例1:如图在ABC中,D、E分别是AC
8、,AB边上的点,BD与CE交于点O,给出下列四个条件:BEO=CDO;BE=CD;上述四个条件中,那两个条件可以判断ABC是等腰三角形?BEO=CDO;BE=CD;EOB=DOCAB=ACBOECOD(AAS)CE=BDOE=ODBOECOD(AAS)例1:如图在ABC中,D、E分别是AC,AB边上的点,BD与CE交于点O,给出下列四个条件:BEO=CDO;BO=C0上述四个条件中,那两个条件可以判断ABC是等腰三角形?BEO=CDO;BO=C0EOB=DOCAB=ACBOECOD(AAS)CE=BDOE=ODBOECOD(AAS)例1:如图在ABC中,D、E分别是AC,AB边上的点,BD与CE交于点O,给出下列四个条件:EBO=DCO;BO=C0上述四个条件中,那两个条件可以判断ABC是等腰三角形?EOB=DOCAB=ACBOECOD(AAS)CE=BDOE=ODBOECOD(ASA)EBO=DCO;BO=C0