资源描述
七年级数学上册1.1生活中的图形期末试卷【A4可打印】
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计34分)
1、下列说法不正确的是( )
A .四棱柱是长方体 B .八棱柱有10个面
C .六棱柱有12个顶点 D .经过棱柱的每个顶点有3条棱
2、一个几何体由4个相同的小正方体搭成,从正面看和从左面看到的形状图如图所示,则原立体图形不可能是( )
A . B . C . D .
3、围成下列立体图形的各个面中,每个面都是平面的是( )
A . B .
C . D .
4、如下图所示将三角形绕直线l旋转一周,可以得到图(e)所示的立体图形的是( )
A .图(a) B .图(b) C .图(c) D .图(d)
5、如图,一个正方块的六个面分别标有A,B,C,D,E,F,从三个不同方向看到的情况,如图所示,则A的对面应该是字母( )
A .B B .C C .E D .F
6、一位雕塑家利用15个棱长为1米的相同正方体,在公园空地设计了一个如图所示的几何体造型,需要把露出的表面都涂上颜色,则需要涂颜色部分的面积为( )
A .46米2 B .37米2 C .28米2 D .25米2
7、下列几何体中,不完全是由平面围成的是( )
A . B . C . D .
8、将下图中的三角形绕虚线旋转一周,所得的几何体是( ).
A . B . C . D .
9、下列说法正确的是( )
A .圆柱的侧面是长方形 B .柱体的上下两底面可以大小不一样
C .棱锥的侧面是三角形 D .长方体不是棱柱
10、从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是( )
A .20 B .22 C .24 D .26
11、从下列物体抽象出来的几何图形可以看成圆柱的是( )
A . B . C . D .
12、如图,已知长方体ABCD﹣EFGH,在下列棱中,与棱GC异面的( )
A .棱EA B .棱GH C .棱AB D .棱GF
13、如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为( )
A .12π B .15π C .12π+6 D .15π+12
14、某几何体的三视图如图所示;则该几何体的表面积为( )
A .6 +6+2 B .18+2 C .3 D .6
15、如图, 是直角三角形 的高,将直角三角形 按以下方式旋转一周可以得到右侧几何体的是( ).
A .绕着 旋转 B .绕着 旋转 C .绕着 旋转 D .绕着 旋转
16、下面几何体中,是长方体的为( )
A . B .
C . D .
17、如图,将直角三角形绕其斜边旋转一周,得到的几何体为( )
A . B . C . D .
二、填空题(每小题2分,共计40分)
1、有一个正方体,六个面上分别写有数字1,2,3,4,5,6,如图是我们能看到的三种情况,如果记6的对面数字为a,2的对面数字为b,那么a+b的值为 .
2、如图,有一次数学活动课上,小颖用 10 个棱长为 1 的正方体积木搭成一个几何体,然后她请小华用其 他棱长为 1 的正方体积木在旁边再搭一个几何体,使用小华所搭几何体恰好和小颖所搭几何体拼成一个 无空隙的大正方体(不改变小颖所搭几何体的形状).那么:按照小颖的要求搭几何体,小华至少需要 个正方体积木.按照小颖的要求,小华所搭几何体的表面积最小为 .
3、长方形的两条边长分别为3cm和4cm,以其中一条边所在的直线为轴旋转一周后得到几何体的底面积是 .
4、如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小立方体,王亮所搭几何体的表面积为 .
5、一个几何体的三视图如图所示,根据图中数据,计算出该几何体的表面积是 .
6、用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是 cm2.
7、李强同学用棱长为1的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为 .
8、2019年10月1日,阅兵空中梯队战机通过北京天安门广场上空时,其尾部拉出五彩斑斓的线,庆祝我们伟大的祖国成立70周年.飞机表演“飞机拉线”,可以用数学知识解释为 .
9、十八世纪数学家欧拉证明了简单多面体中顶点数( ),面数( ),棱数( )之间存在一个有趣的数量关系: ,这就是著名的欧拉定理.某个玻璃饰品的外形是简单的多面体,它的外表面是由三角形和八边形拼接而成,且有24个顶点,每个顶点都有3条棱,设该多面体外表面三角形个数是 个,八边形的个数是 ,则x+y= .
10、如图,由几个边长为1的小立方体所组成的几何体,从上面看到的形状图如图所示,小正方形中的数字表示在该位置的小正方体的个数,则这个几何体的表面积为 .
11、如图所示,一个长方体的长为4cm,宽为3cm,高为5cm.则长方体所有棱长的和为 ;长方体的表面积为 .
12、如图所示为8个立体图形.
其中,柱体的序号为 ,锥体的序号为 ,有曲面的序号为 .
13、从棱长为4的正方体毛坯的一角,挖去一个棱长为2的小正方体,得到一个如图所示的零件,则这个零件的表面积为 .
14、将下列几何体分类,柱体有: (填序号).
15、已知长方形的长为4cm , 宽3cm , 现将这个长方形绕它的一边所在直线旋转一周,则所得到的几何体的体积为 cm3 .
16、用8个棱长3厘米的立方体拼成一个长方体,其中表面积最小的长方体的面积为 平方厘米.
17、一个直角三角形绕它的一条直角边旋转一周得到的几何体是 .
18、如图,在平面直角坐标系中, 的三个顶点的坐标分别是 、 、 ,如果 沿着边 旋转,则所得旋转体的体积是 (结果保留 ).
19、长方形的长为5cm,宽为3cm,请你计算该长方形绕着它的边旋转一周所得几何体的体积0 是.(π取3.14结果保留整数)
20、笔尖在纸上运动时就形成了线,这可以说明点动成线;汽车的雨刷在挡风玻璃上画出一个扇面,这可以说明 .
三、计算题(每小题2分,共计6分)
1、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱.现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?
2、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?
3、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积.
四、解答题(每小题4分,共计20分)
1、如图,是一个几何体从正面、左面、上面看得到的平面图形,判断下面说法的正误(正确的在括号内划△,错误的在括号内划▲)
(1)这是一个棱锥 .
(2)这个几何体有4个面 .
(3)这个几何体有5个顶点 .
(4)这个几何体有8条棱 .
(5)请你再说出一个正确的结论 .
2、将一个半径为2cm的圆分成3个扇形,其圆心角的比1:2:3,求:
①各个扇形的圆心角的度数.
②其中最大一个扇形的面积.
3、将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现有一个长是5cm、宽是6cm的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱几何体,它们的体积分别是多大?
4、如图所示的立方体的六个面分别标着连续的整数,求这六个整数的和.
5、将下列几何体与它的名称连接起来.
展开阅读全文