资源描述
北师大版七年级数学上册平时训练试卷【A4可打印】
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计30分)
1、如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为( )
A .12π B .15π C .12π+6 D .15π+12
2、下面几种图形:①三角形,②长方形,③立方体,④圆,⑤圆锥,⑥圆柱.其中属于立体图形的有( )
A .1个 B .2个 C .3个 D .4个
3、下面的几何体,是由A、B、C、D中的哪个图旋转一周形成的( )
A . B . C . D .
4、矩形ABCD中,AB=3,BC=4,以AB为轴旋转一周得到圆柱,则它的表面积是( ).
A .56 B .32 C .24 D .60
5、如图是一个正方体,小敏同学经过研究得到如下5个结论,正确的结论有( )个.
①用剪刀沿着它的棱剪开这个纸盒,至少要剪7刀,才能展开成平面图形;②用一平面去截这个正方体得到的截面是三角形ABC,则∠ABC=45°;③一只蚂蚁在一个实心正方体木块P点处想沿着表面爬到C点最近的路只有4条;④用一平面去截这个正方体得到的截面可能是八边形;⑤正方体平面展开图有11种不同的图形.
A .1 B .2 C .3 D .4
6、从下列物体抽象出来的几何图形可以看成圆柱的是( )
A . B . C . D .
7、下列图形中,不可以作为一个正方体的展开图的是( )
A . B . C . D .
8、围成下列立体图形的各个面中,每个面都是平面的是( )
A . B .
C . D .
9、有一个几何体模型,甲同学:它的侧面是曲面;乙同学:它只有一个底面,且是圆形.则该模型对应的立体图形可能是( )
A .三棱柱 B .三棱锥 C .圆锥 D .圆柱
10、下列几何图形中为圆锥的是( ).
A . B . C . D .
11、如图是一个几何体的三视图,根据图中提供的数据,计算这个几何体的表面积是( )
A . B . C . D .
12、一位雕塑家利用15个棱长为1米的相同正方体,在公园空地设计了一个如图所示的几何体造型,需要把露出的表面都涂上颜色,则需要涂颜色部分的面积为( )
A .46米2 B .37米2 C .28米2 D .25米2
13、如图,一个正方体的六个面上分别标有数字1,2,3,4,5,6.根据图中三种状态所显示的数字,正方体的正面“?”表示的数字是( )
A .1 B .2 C .3 D .6
14、下列图形绕虚线旋转一周,便能形成圆锥体的是( )
A . B . C . D .
15、下列几何体中,由一个曲面和一个圆围成的几何体是( )
A .球 B .圆锥 C .圆柱 D .棱柱
二、填空题(每小题4分,共计20分)
1、如果一个六棱柱的一条侧棱长为5 cm,那么所有侧棱之和为 .
2、如图,一个长方体的表面展开图中四边形ABCD是正方形 正方形的四个角都是直角、四条边都相等 ,则根据图中数据可得原长方体的体积是 .
3、用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是 cm2.
4、边长为2㎝的正方体有 个面 , 个顶点, 条边,表面积是 cm2 .
5、如图,由18个棱长为2cm的正方体拼成的立体图形,它的表面积是 cm2.
三、判断题(每小题2分,共计6分)
1、棱柱侧面的形状可能是一个三角形。( )
2、体是由面围成的( )
四、计算题(每小题4分,共计12分)
1、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积.
2、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?
3、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.
五、解答题(每小题4分,共计32分)
1、“赶陀螺”是一项深受人们喜爱的民族性运动,如图所示是一个陀螺的立体结构图.已知底面圆的直径 ,圆柱体部分的高 ,圆锥体部分的高 ,求出这个陀螺的表面积(结果保留 ).
2、在一块长为 ,宽为 的长方形铁片的四个角都剪去一个边长为 的小正方形,然后折成一个无盖的盒子,求这个盒子的表面积(用含 、 的代数式表示).
3、图中的几何体是由几个面所摆成的?面与面相交成几条线?它们是直的还是曲的?
4、如图1,把一张长10厘米、宽6厘米的长方形纸板分成两个相同的直角三角形.
(1)甲三角形(如图2)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方米?
(2)乙三角形(如图3)旋转一周,可以形成一个怎样的几何体?它的体积是多少立方米?
5、如图,直角三角形ABC的两条直角边AB和BC分别长4厘米和3厘米,现在以斜边AC为轴旋转一周.求所形成的立体图形的体积.
6、如图,正方形 的边长为 ,以直线 为轴,将正方形旋转一周,所得几何体的表面积是多少?(结果保留 )
7、将下列几何体与它的名称连起来
8、写出下图中各个几何体的名称,并按锥体和柱体把它们分类.
展开阅读全文