1、七年级数学上册1.1生活中的图形期中试卷(不含答案)(考试时间:120分钟,总分100分)班级:_ 姓名:_ 分数:_一、单选题(每小题2分,共计34分)1、如图,是由一些棱长为1cm的小正方体构成的立体图形的三种视图,那么这个立体图形的表面积是( )A .12 B .14 C .16 D .182、下列图形是棱锥的是( )A . B . C . D .3、圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是( )A . B . C . D .4、下列几何体中,由一个曲面和一个圆围成的几何体是( )A .球 B .圆锥 C .圆柱 D .棱
2、柱5、李强同学用棱长为1的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为( )A .37 B .33 C .24 D .216、小欣同学用纸(如图)折成了个正方体的盒子,里面放了一瓶墨水,混放在下面的盒子里,只凭观察,选出墨水在哪个盒子中( )A . B . C . D .7、下列几何体中,其主视图是曲线图形的是( )A . B . C . D .8、如下图所示将三角形绕直线l旋转一周,可以得到图(e)所示的立体图形的是( )A .图(a) B .图(b) C .图(c) D .图(d)9、电视剧西游记中,孙悟空的“金箍棒”飞速旋转,形成一个圆面,是属
3、于( )A .点动成线 B .线动成面 C .面动成体 D .以上都不对10、从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图5所示的零件,则这个零件的表面积是( )A .20 B .22 C .24 D .2611、下列立体图形含有曲面的是( )A . B . C . D .12、下列图形中,不属于立体图形的是( )A . B . C . D .13、下列几何体中,圆柱体是( )A . B . C . D .14、一位美术老师在课堂上进行立体模型素描教学时,把14个棱长为 1分米的正方体摆在课桌上成如图形式,然后他把露出的表面都涂上不同的颜色,则被他涂上颜色部分的面积为
4、( )A .33分米2 B .24分米2 C .21分米2 D .42分米215、下面四个立体图形中,只由一个面就能围成的是( )A . B . C . D .16、在下图的四个立体图形中,从正面看是四边形的立体图形有( )A .1个 B .2个 C .3个 D .4个17、下列说法正确的有( )n棱柱有2n个顶点,2n条棱,(n+2)个面(n为不小于3的正整数);点动成线,线动成面,面动成体;圆锥的侧面展开图是一个圆;用平面去截一个正方体,截面的形状可以是三角形、四边形、五边形、六边形.A .1个 B .2个 C .3个 D .4个二、填空题(每小题2分,共计40分)1、如图,有一次数学活动
5、课上,小颖用 10 个棱长为 1 的正方体积木搭成一个几何体,然后她请小华用其 他棱长为 1 的正方体积木在旁边再搭一个几何体,使用小华所搭几何体恰好和小颖所搭几何体拼成一个 无空隙的大正方体(不改变小颖所搭几何体的形状).那么:按照小颖的要求搭几何体,小华至少需要 个正方体积木.按照小颖的要求,小华所搭几何体的表面积最小为 .2、如图,长方形 ABCD 的长 AB=4,宽 BC=3,以 AB 所在的直线为轴,将长方形旋转一周后所得几何体的主视图的面积是 .3、一个几何体的面数为12,棱数为30,它的顶点数为 4、如图,在平面直角坐标系中,的三个顶点的坐标分别是、,如果沿着边旋转,则所得旋转体
6、的体积是 (结果保留).5、底面积为50的长方体的体积为25,则表示的实际意义是 .6、笔尖在纸上写字说明 ;车轮旋转时看起来像个圆面,这说明 ;一枚硬币在光滑的桌面上快速旋转形成一个球,这说明 .7、长为4,宽为2的矩形绕其一边旋转构成一个圆柱的最大体积为 (结果保留).8、在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”“2”“3”“4”“5”“6”,在试验次数很大时,数字“6”朝上的频率的变化趋势接近的值是 .9、从棱长为2cm的正方体毛坯的一角,挖去一个棱长为1cm的小正方体,得到一个如图所示的零件,则这个零件的表面积是 cm2。10、如图,由18个棱长为2cm的正方体拼
7、成的立体图形,它的表面积是 cm2.11、如图,直角三角形绕直线L旋转一周,得到的立体图形是 .12、长方体的长、宽、高分别是、,它的底面面积是 ;它的体积是 13、一个棱锥共有7个面,这是 棱锥,有 个侧面.14、如图是以长为120cm,宽为80cm的长方形硬纸,在它的四个角处各剪去一个边长为20cm的正方形后,将其折叠成如图所示的无盖的长方体,则这个长方体的体积为 15、一个几何体的三视图如图所示,则该几何体的表面积是 16、一个正方体的表面积是24,那么这个正方体的所有棱长之和是 .17、由5个棱长为1的小正方形组成的几何体如图放置,一面着地,两面靠墙,如果要将露出来的部分涂色,则涂色部
8、分的面积为 .18、如图,正方形ABCD的边长为3cm,以直线AB为轴,将正方形旋转一周,所得几何体的体积为 cm3.(结果保留)19、一个几何体的三视图如图所示,则该几何体的表面积为 .(取3)20、硬币在桌面上快速地转动时,看上去像球,这说明了 三、计算题(每小题2分,共计6分)1、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积2、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积3、已知有一个长为5cm,
9、宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?四、解答题(每小题4分,共计20分)1、下面是由些棱长的正方体小木块搭建成的几何体的主视图、俯视图和左视图,请你观察它是由多少块小木块组成的;在俯视图中标出相应位置立方体的个数;求出该几何体的表面积(包含底面)2、如图,是一个正六棱柱,它的底面边长是3cm,高是6cm(1)这个棱柱的侧面积是多少?(2)这个棱柱共有多少条棱?所有的棱长的和是多少?(3)这个棱柱共有多少个顶点?(4)通过观察,试用含n的式子表示n棱柱的面数与棱的条数3、在小学,我们曾学过圆柱的体积计算公式:v=R2h (R是圆柱
10、底面半径,h为圆柱的高)现有一个长方形,长为2cm宽为1cm,分别以它的两边所在的直线为轴旋转一周得到的几何体的体积分别是多少?它们之间有何关系?4、如图,长方形的长和宽分别是7cm和3cm,分别绕着它的长和宽所在的直线旋转一周,回答下列问题:(1)如图(1),绕着它的宽所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(取3.14)(2)如图(2),绕着它的长所在的直线旋转一周,所得到的是什么样的几何体?得到的几何体的体积是多少?(取3.14)5、已知长方形ABCD的长为10cm,宽为4cm,将长方形绕AD边所在直线旋转后形成一个什么立体图形?这个立体图形的体积是多少?