资源描述
初高中数学衔接教材
乘法公式
我们在初中已经学习过了下列一些乘法公式:
(1)平方差公式 ;
(2)完全平方公式 .
我们还可以通过证明得到下列一些乘法公式:
(1)立方和公式 ;
(2)立方差公式 ;
(3)三数和平方公式 ;
(4)两数和立方公式 ;
(5)两数差立方公式 .
对上面列出的五个公式,有兴趣的同学可以自己去证明.
第一讲 因式分解
因式分解的主要方法有:十字相乘法、提取公因式法、公式法、分组分解法,另外还应了解求根法及待定系数法.
1.十字相乘法
例1 分解因式:
(1)x2-3x+2; (2)x2+4x-12;
(3); (4).
解:(1)如图1.1-1,将二次项x2分解成图中的两个x的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x,就是x2-3x+2中的一次项,所以,有
x2-3x+2=(x-1)(x-2).
-ay
-by
x
x
图1.1-4
-2
6
1
1
图1.1-3
-1
-2
1
1
图1.1-2
-1
-2
x
x
图1.1-1
说明:今后在分解与本例类似的二次三项式时,可以直接将图1.1-1中的两个x用1来表示(如图1.1-2所示).
(2)由图1.1-3,得
x2+4x-12=(x-2)(x+6).
(3)由图1.1-4,得
-1
1
x
y
图1.1-5
=
(4)=xy+(x-y)-1
=(x-1) (y+1) (如图1.1-5所示).
习 题 一
一、填空题:
1、把下列各式分解因式:
(1)__________________________________________________。
(2)__________________________________________________。
(3)__________________________________________________。
(4)__________________________________________________。
(5)__________________________________________________。
(6)__________________________________________________。
(7)__________________________________________________。
(8)__________________________________________________。
(9)__________________________________________________。
(10)__________________________________________________。
2、
3、若则,。
二、选择题:(每小题四个答案中只有一个是正确的)
1、在多项式(1)(2)(3)(4)
(5)中,有相同因式的是( )
A、只有(1)(2) B、只有(3)(4)
C、只有(3)(5) D、(1)和(2);(3)和(4);(3)和(5)
2、分解因式得( )
A、 B、 C、 D、
3、分解因式得( )
A、 B、
C、 D、
4、若多项式可分解为,则、的值是( )
A、, B、, C、, D、,
5、若其中、为整数,则的值为( )
A、或 B、 C、 D、或
三、把下列各式分解因式
1、 2、
3、 4、
第二讲 一元二次方程
若一元二次方程ax2+bx+c=0(a≠0)有两个实数根
,,
则有
;
.
所以,一元二次方程的根与系数之间存在下列关系:
如果ax2+bx+c=0(a≠0)的两根分别是x1,x2,那么x1+x2=,x1·x2=.这一关系也被称为韦达定理.
特别地,对于二次项系数为1的一元二次方程x2+px+q=0,若x1,x2是其两根,由韦达定理可知
x1+x2=-p,x1·x2=q,
即 p=-(x1+x2),q=x1·x2,
所以,方程x2+px+q=0可化为 x2-(x1+x2)x+x1·x2=0,由于x1,x2是一元二次方程x2+px+q=0的两根,所以,x1,x2也是一元二次方程x2-(x1+x2)x+x1·x2=0.因此有
以两个数x1,x2为根的一元二次方程(二次项系数为1)是
x2-(x1+x2)x+x1·x2=0.
例1 已知方程的一个根是2,求它的另一个根及k的值.
分析:由于已知了方程的一个根,可以直接将这一根代入,求出k的值,再由方程解出另一个根.但由于我们学习了韦达定理,又可以利用韦达定理来解题,即由于已知了方程的一个根及方程的二次项系数和常数项,于是可以利用两根之积求出方程的另一个根,再由两根之和求出k的值.
解法一:∵2是方程的一个根,
∴5×22+k×2-6=0,
∴k=-7.
所以,方程就为5x2-7x-6=0,解得x1=2,x2=-.
所以,方程的另一个根为-,k的值为-7.
解法二:设方程的另一个根为x1,则 2x1=-,∴x1=-.
由 (-)+2=-,得 k=-7.
所以,方程的另一个根为-,k的值为-7.
例2 已知关于x的方程x2+2(m-2)x+m2+4=0有两个实数根,并且这两个实数根的平方和比两个根的积大21,求m的值.
分析: 本题可以利用韦达定理,由实数根的平方和比两个根的积大21得到关于m的方程,从而解得m的值.但在解题中需要特别注意的是,由于所给的方程有两个实数根,因此,其根的判别式应大于零.
解:设x1,x2是方程的两根,由韦达定理,得
x1+x2=-2(m-2),x1·x2=m2+4.
∵x12+x22-x1·x2=21,
∴(x1+x2)2-3 x1·x2=21,
即 [-2(m-2)]2-3(m2+4)=21,
化简,得 m2-16m-17=0,
解得 m=-1,或m=17.
当m=-1时,方程为x2+6x+5=0,Δ>0,满足题意;
当m=17时,方程为x2+30x+293=0,Δ=302-4×1×293<0,不合题意,舍去.
综上,m=17.
说明:(1)在本题的解题过程中,也可以先研究满足方程有两个实数根所对应的m的范围,然后再由“两个实数根的平方和比两个根的积大21”求出m的值,取满足条件的m的值即可.
(1)在今后的解题过程中,如果仅仅由韦达定理解题时,还要考虑到根的判别式Δ是否大于或大于零.因为,韦达定理成立的前提是一元二次方程有实数根.
例3 已知两个数的和为4,积为-12,求这两个数.
分析:我们可以设出这两个数分别为x,y,利用二元方程求解出这两个数.也可以利用韦达定理转化出一元二次方程来求解.
解法一:设这两个数分别是x,y,
则 x+y=4, ①
xy=-12. ②
由①,得 y=4-x,
代入②,得
x(4-x)=-12,
即 x2-4x-12=0,
∴x1=-2,x2=6.
∴ 或
因此,这两个数是-2和6.
解法二:由韦达定理可知,这两个数是方程
x2-4x-12=0
的两个根.
解这个方程,得
x1=-2,x2=6.
所以,这两个数是-2和6.
说明:从上面的两种解法我们不难发现,解法二(直接利用韦达定理来解题)要比解法一简捷.
习 题 二
A 组
1.选择题:
(1)已知关于x的方程x2+kx-2=0的一个根是1,则它的另一个根是( )
(A)-3 (B)3 (C)-2 (D)2
(2)下列四个说法:
①方程x2+2x-7=0的两根之和为-2,两根之积为-7;
②方程x2-2x+7=0的两根之和为-2,两根之积为7;
③方程3 x2-7=0的两根之和为0,两根之积为;
④方程3 x2+2x=0的两根之和为-2,两根之积为0.
其中正确说法的个数是 ( )
(A)1个 (B)2个 (C)3个 (D)4个
(3)关于x的一元二次方程ax2-5x+a2+a=0的一个根是0,则a的值是( )
(A)0 (B)1 (C)-1 (D)0,或-1
2.填空:
(1)方程kx2+4x-1=0的两根之和为-2,则k= .
(2)方程2x2-x-4=0的两根为α,β,则α2+β2= .
(3)已知关于x的方程x2-ax-3a=0的一个根是-2,则它的另一个根是
.
(4)方程2x2+2x-1=0的两根为x1和x2,则| x1-x2|= .
3.试判定当m取何值时,关于x的一元二次方程m2x2-(2m+1) x+1=0有两个不相等的实数根?有两个相等的实数根?没有实数根?
4.求一个一元二次方程,使它的两根分别是方程x2-7x-1=0各根的相反数.
B 组
1.选择题:
若关于x的方程x2+(k2-1) x+k+1=0的两根互为相反数,则k的值为 ( )
(A)1,或-1 (B)1 (C)-1 (D)0
2.填空:
(1)若m,n是方程x2+2005x-1=0的两个实数根,则m2n+mn2-mn的值等于 .
(2)如果a,b是方程x2+x-1=0的两个实数根,那么代数式a3+a2b+ab2+b3的值是 .
3.已知关于x的方程x2-kx-2=0.
(1)求证:方程有两个不相等的实数根;
(2)设方程的两根为x1和x2,如果2(x1+x2)>x1x2,求实数k的取值范围.
C 组
1.选择题:
(1)已知一个直角三角形的两条直角边长恰好是方程2x2-8x+7=0的两根,则这个直角三角形的斜边长等于 ( )
(A) (B)3 (C)6 (D)9
(2)若x1,x2是方程2x2-4x+1=0的两个根,则的值为 ( )
(A)6 (B)4 (C)3 (D)
(3)如果关于x的方程x2-2(1-m)x+m2=0有两实数根α,β,则α+β的取值范围为 ( )
(A)α+β≥ (B)α+β≤ (C)α+β≥1 (D)α+β≤1
(4)已知a,b,c是ΔABC的三边长,那么方程cx2+(a+b)x+=0的根的情况是 ( )
(A)没有实数根 (B)有两个不相等的实数根
(C)有两个相等的实数根 (D)有两个异号实数根
2.填空:
若方程x2-8x+m=0的两根为x1,x2,且3x1+2x2=18,则m= .
3. 已知x1,x2是关于x的一元二次方程4kx2-4kx+k+1=0的两个实数根.
(1)是否存在实数k,使(2x1-x2)( x1-2 x2)=-成立?若存在,求出k的值;若不存在,说明理由;
(2)求使-2的值为整数的实数k的整数值;
(3)若k=-2,,试求的值.
第三讲 三角形的“四心”
三角形是最重要的基本平面图形,很多较复杂的图形问题可以化归为三角形的问题.
三角形的三条中线相交于一点,这个交点称为三角形的重心.三角形的重心在三角形的内部,恰好是每条中线的三等分点.
例1 求证三角形的三条中线交于一点,且被该交点分成的两段长度之比为2:1.
已知 D、E、F分别为△ABC三边BC、CA、AB的中点,
求证 AD、BE、CF交于一点,且都被该点分成2:1.
证明 连结DE,设AD、BE交于点G,
D、E分别为BC、AE的中点,则DE//AB,且,
∽,且相似比为1:2,
.
设AD、CF交于点,同理可得,
则与重合,
AD、BE、CF交于一点,且都被该点分成.
三角形的三条角平分线相交于一点,是三角形的内心. 三角形的内心在三角形的内部,它到三角形的三边的距离相等.
例2 已知的三边长分别为,I为的内心,且I在的边上的射影分别为,求证:.
证明 作的内切圆,则分别为内切圆在三边上的切点,
为圆的从同一点作的两条切线,,
同理,BD=BF,CD=CE.
即.
例3 若三角形的内心与重心为同一点,求证:这个三角形为正三角形.
已知 O为三角形ABC的重心和内心.
求证 三角形ABC为等边三角形.
证明 如图,连AO并延长交BC于D.
O为三角形的内心,故AD平分,
(角平分线性质定理)
O为三角形的重心,D为BC的中点,即BD=DC.
,即.
同理可得,AB=BC.
为等边三角形.
三角形的三条高所在直线相交于一点,该点称为三角形的垂心.锐角三角形的垂心一定在三角形的内部,直角三角形的垂心为他的直角顶点,钝角三角形的垂心在三角形的外部.
过不共线的三点A、B、C有且只有一个圆,该圆是三角形ABC的外接圆,圆心O为三角形的外心.三角形的外心到三个顶点的距离相等,是各边的垂直平分线的交点.
习 题 三
1.求证:若三角形的垂心和重心重合,求证:该三角形为正三角形.
2. (1) 若三角形ABC的面积为S,且三边长分别为,则三角形的内切圆的半径是___________;
(2)若直角三角形的三边长分别为(其中为斜边长),则三角形的内切圆的半径是___________. 并请说明理由.
展开阅读全文