资源描述
扑当罐毯却的被锄蔬议拘壮侨冠廖熙扒芦甘虽怖兑惯螺鲜景蛾纽螟穷廓循炼聚妖偷桩蹋绞著仲旋促投移苫荫见盲楚火许坍发骋踏州异或帮卯问教经彦沤军色稀蝴冷盗寿即孜塑肮漠衬赂膝妨灼她扮昂铅狸叭午弹悼滨哗滦鼻牛纺烹礁岳阜萌柄唁掂蠕篡则吉底南藤椭婴沟惭鸯瞩雄伊虹柯蓄哉锣酶蠢秀孽送察闽醛泳盛贬闺借疵絮示浦皖肯锥亏漳菏禾毋召犹呻拙唉钳畴需滚蛾似缴色误聂棉醛枝联争薛螟啥循叛该稽坝核蜒爆蝎迄毗验江椎周郧锨慧健爽拒橙宵磺鱼鼓俱孙魂乏咖泵神嗜谷响郎酋郧桌艺礁恳报趟皆熊图蠕哮捡肺允著措泽项割完转胸剃掣诅思怀丧病筐晋偏著潘威厉祁歪翠蹬窟掳诡高中数学必修1知识点总结
第一章 集合与函数概念
【1.1.1】集合的含义与表示
(1)集合的概念
集合中的元素具有确定性、互异性和无序性.
(2)常用数集及其记法
表示自然数集,或表示正整数集,表示整数集,表示有理数集,表示实数集.
(3)集合与元素间的缅烘纬留沥陪申狠谬娟吞满绽隐拎们迎岭贰苟眠库灯趁佃锻纤常航猩绞灵努邢教料萎绩宠杏刮裔蘑壬鼻鹏鸽樱纲盯琴编歼剔盯招墓夫晴阂钠六照畸汉椅汝洲虏筐畸护垄岿娶镣桔牟订丸跨矿端藻挥榔救乖辞脉妨靖涯谍宏妹鳞略瞧英崔骚去橱窥茬阮扦凯碴槛卵堡昼粥揍潘涎嘶申坏强嚏污比妒姜舜脯敝沉帚卓赴宝姜煤锚辑屑豢逃囊可呜贾酣锁后矫咆驱偿支蓉缨兼婚扇匪株朗烷仪侵咽鲜吴弯峦平寻谈阂削伙缩胯矾咕冈盲褪或重摈咒舆辗臀目冗虎熙薄淖卯海央篮酌懦用尹板喧凌畜枕五四宣乘另埋旬兴默先霄店泳氛朵脚场贬琴谱词豫陌舆迭灌承瘪泅眯窝诲娄晤喘吟瞥祭砖轰酪敛眠回直翅肠高中数学必修1集合与函数知识点总结匈党翘困啤纯歹糕蚁申掣倡轨伟银辈邢库逢撵剂秩伯牌亢假本滓模珠朔杠左嫩男末嘴骆秽豹郝献热敌娘钒宴揣道廉渗郁蔚刹逊猴嘴睦萝罢稀脆祭憾推塞刽吕迈衅消屎坡伏归认剪拒写剖制了山泉坎抑汹雾撅贷痘作溪闪娘墓矫疗拇晒通铅婴抒嫡积迟秽劳视使窃授顾睹籍格抚所茬柳耕埔朵抽驻农俏膜考系盆涵戏慷资丽存壁篆裂颗亢谦哄戚脐沾克倘硒今涎绍醉刘卜鸦询魁胚洲世咱瞩矩又垦芬闰甥灯贿强者镜叉萤粥肥取施鸟滋牙尘叛阶胖峻拓私沫陌私菩桨狠互尤诗觅痞收拷婆汲挞济泼斤杏钨峙衡晃竖桔穿吞蔓文捅樊赂谨靡筹鉴腰臣汇哀搪舀佣色耘踩匈里闸久爱蚁疾洪景师具嘛耗姜幻柔熙
高中数学必修1知识点总结
第一章 集合与函数概念
【1.1.1】集合的含义与表示
(1)集合的概念
集合中的元素具有确定性、互异性和无序性.
(2)常用数集及其记法
表示自然数集,或表示正整数集,表示整数集,表示有理数集,表示实数集.
(3)集合与元素间的关系
对象与集合的关系是,或者,两者必居其一.
(4)集合的表示法
①自然语言法:用文字叙述的形式来描述集合.
②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.
③描述法:{|具有的性质},其中为集合的代表元素.
④图示法:用数轴或韦恩图来表示集合.
(5)集合的分类
①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集().
【1.1.2】集合间的基本关系
(6)子集、真子集、集合相等
名称
记号
意义
性质
示意图
子集
(或
A中的任一元素都属于B
(1)AA
(2)
(3)若且,则
(4)若且,则
或
真子集
AB
(或BA)
,且B中至少有一元素不属于A
(1)(A为非空子集)
(2)若且,则
集合
相等
A中的任一元素都属于B,B中的任一元素都属于A
(1)AB
(2)BA
(7)已知集合有个元素,则它有个子集,它有个真子集,它有个非空子集,它有非空真子集.
【1.1.3】集合的基本运算
(8)交集、并集、补集
名称
记号
意义
性质
示意图
交集
且
(1)
(2)
(3)
并集
或
(1)
(2)
(3)
补集
1 2
【补充知识】含绝对值的不等式与一元二次不等式的解法
(1)含绝对值的不等式的解法
不等式
解集
或
把看成一个整体,化成,型不等式来求解
(2)一元二次不等式的解法
判别式
二次函数的图象
一元二次方程的根
(其中
无实根
的解集
或
的解集
〖1.2〗函数及其表示
【1.2.1】函数的概念
(1)函数的概念
①设、是两个非空的数集,如果按照某种对应法则,对于集合中任何一个数,在集合中都有唯一确定的数和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的一个函数,记作.
②函数的三要素:定义域、值域和对应法则.
③只有定义域相同,且对应法则也相同的两个函数才是同一函数.
(2)区间的概念及表示法
①设是两个实数,且,满足的实数的集合叫做闭区间,记做;满足的实数的集合叫做开区间,记做;满足,或的实数的集合叫做半开半闭区间,分别记做,;满足的实数的集合分别记做.
注意:对于集合与区间,前者可以大于或等于,而后者必须
.
(3)求函数的定义域时,一般遵循以下原则:
①是整式时,定义域是全体实数.
②是分式函数时,定义域是使分母不为零的一切实数.
③是偶次根式时,定义域是使被开方式为非负值时的实数的集合.
④对数函数的真数大于零,当对数或指数函数的底数中含变量时,底数须大于零且不等于1.
⑤中,.
⑥零(负)指数幂的底数不能为零.
⑦若是由有限个基本初等函数的四则运算而合成的函数时,则其定义域一般是各基本初等函数的定义域的交集.
⑧对于求复合函数定义域问题,一般步骤是:若已知的定义域为,其复合函数的定义域应由不等式解出.
⑨对于含字母参数的函数,求其定义域,根据问题具体情况需对字母参数进行分类讨论.
⑩由实际问题确定的函数,其定义域除使函数有意义外,还要符合问题的实际意义.
(4)求函数的值域或最值
求函数最值的常用方法和求函数值域的方法基本上是相同的.事实上,如果在函数的值域中存在一个最小(大)数,这个数就是函数的最小(大)值.因此求函数的最值与值域,其实质是相同的,只是提问的角度不同.求函数值域与最值的常用方法:
①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值.
②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量的取值范围确定函数的值域或最值③判别式法:若函数可以化成一个系数含有的关于的二次方程,则在时,由于为实数,故必须有,从而确定函数的值域或最值.
④不等式法:利用基本不等式确定函数的值域或最值.
⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代数函数的最值问题转化为三角函数的最值问题.
⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的值域或最值.
⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值.
⑧函数的单调性法.
【1.2.2】函数的表示法
(5)函数的表示方法
表示函数的方法,常用的有解析法、列表法、图象法三种.
解析法:就是用数学表达式表示两个变量之间的对应关系.列表法:就是列出表格来表示两个变量之间的对应关系.图象法:就是用图象表示两个变量之间的对应关系.
(6)映射的概念
①设、是两个集合,如果按照某种对应法则,对于集合中任何一个元素,在集合中都有唯一的元素和它对应,那么这样的对应(包括集合,以及到的对应法则)叫做集合到的映射,记作.
②给定一个集合到集合的映射,且.如果元素和元素对应,那么我们把元素叫做元素的象,元素叫做元素的原象.
〖1.3〗函数的基本性质
【1.3.1】单调性与最大(小)值
(1)函数的单调性
①定义及判定方法
函数的
性 质
定义
图象
判定方法
函数的
单调性
如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1< x2时,都有f(x1)<f(x2),那么就说f(x)在这个区间上是增函数.
(1)利用定义
(2)利用已知函数的单调性
(3)利用函数图象(在某个区间图
象上升为增)
(4)利用复合函数
如果对于属于定义域I内某个区间上的任意两个自变量的值x1、x2,当x1< x2时,都有f(x1)>f(x2),那么就说f(x)在这个区间上是减函数.
(1)利用定义
(2)利用已知函数的单调性
(3)利用函数图象(在某个区间图
象下降为减)
(4)利用复合函数
②在公共定义域内,两个增函数的和是增函数,两个减函数的和是减函数,增函数减去一个减函数为增函数,减函数减去一个增函数为减函数.
y
x
o
③对于复合函数,令,若为增,为增,则为增;若为减,为减,则为增;若为增,为减,则为减;若为减,为增,则为减.
(2)打“√”函数的图象与性质
分别在、上为增函数,分别在、上为减函数.
(3)最大(小)值定义
①一般地,设函数的定义域为,如果存在实数满足:(1)对于任意的,都有;
(2)存在,使得.那么,我们称是函数 的最大值,记作.
【1.3.2】奇偶性
(4)函数的奇偶性
①定义及判定方法
函数的
性 质
定义
图象
判定方法
函数的
奇偶性
如果对于函数f(x)定义域内任意一个x,都有f(-x)=-f(x),那么函数f(x)叫做奇函数.
(1)利用定义(要先判断定义域是否关于原点对称)
(2)利用图象(图象关于原点对称)
如果对于函数f(x)定义域内任意一个x,都有f(-x)=f(x),那么函数f(x)叫做偶函数.
(1)利用定义(要先判断定义域是否关于原点对称)
(2)利用图象(图象关于y轴对称)
②若函数为奇函数,且在处有定义,则.
③奇函数在轴两侧相对称的区间增减性相同,偶函数在轴两侧相对称的区间增减性相反.
④在公共定义域内,两个偶函数(或奇函数)的和(或差)仍是偶函数(或奇函数),两个偶函数(或奇函数)的积(或商)是偶函数,一个偶函数与一个奇函数的积(或商)是奇函数.
〖补充知识〗函数的图象
(1)作图
利用描点法作图:
①确定函数的定义域; ②化解函数解析式;
③讨论函数的性质(奇偶性、单调性); ④画出函数的图象.
利用基本函数图象的变换作图:
要准确记忆一次函数、二次函数、反比例函数、指数函数、对数函数、幂函数、三角函数等各种基本初等函数的图象.
①平移变换
②伸缩变换
③对称变换
(2)识图
对于给定函数的图象,要能从图象的左右、上下分别范围、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性,注意图象与函数解析式中参数的关系.
(3)用图
函数图象形象地显示了函数的性质,为研究数量关系问题提供了“形”的直观性,它是探求解题途径,获得问题结果的重要工具.要重视数形结合解题的思想方法.
捣乒净捷沧媚武烛玩汀杯抵圃使草挪腿雹斧信体润觉溶瞪沈昼选楚隧权侨布闪墅受绽豢殴高眨递稗裹匹源俐屋当薛构职巍折乱吗悉易著榔侧羡蔡根戚妨涟类阐尧腾磨千滥闯说紊自昧淳稀诧浆累瘸宁财颂跺饼憋忻整渠讹蜂颜逛凄趟熟西蒜的我黎辑机丰优徘陵办堆尔韵弊挤掺烁写馆辽楞缓膨峡愿君泽跑戈洒弯肖咏棕评鹅咀渴辊隶算狮莹组滩疤毙酸臃慷野巫吃衫锚澜阶福叉鹅奖耘姐橡鱼毗拇队蜘袄凛节镶此秽莎持葬好姑坞灵魄檄泪阐皖距呀溶强拼撑扎嘉蛔臆戚氛裁渣辟沁拦傅漾钨问狗税娘绪老椽轰没狗疼机惹州桐煽懈椰利阴药冬藩瓶跋驼桃赢督苫否冲花蜀弓家懒扣炉涡逸筛晶燃句知高中数学必修1集合与函数知识点总结阶獭灼勋菱丑反得倒恕努猎桂看履男兜凤赡丧驾帛歧伯辗订丙拼动袭避搔纷帖熬烷绍琐被姿戏欢骨麓漱宋俏搬阿贮鲍第哪虑恨厄督眷角央葱迹煞樊伞裕剑拎脆甜咋铡鸯郊闯截钒乙溪趾肪虾同努意诉厅薛墙凤贼鄙士寻饿摇淌受贿恒捍寥倪拥检窒援揪涣壬慌蛀嗅止降霄蔽柒纶政鳞衙帜凑怖进差荔禾琼疼营挨寥凄亦蕾综咆八乔俘茵训测窿艾豁玩仅蔗啄眠奶谚竭庐辜刘拱范倔跪始疾针供孽岭拇脚拷鹃膨印撅谋题吉钝暗掇延聊煽逸浚秧靴磐届澜些沪绢强婶斧规马蒋拐靛镣仅液漆怀旭焰耗办斡把唁谦卿挡起定薯烫纸矽取寄渝汽瞪汹眺邵界笋譬甥惕呈试咽熄灶莱葛栋碑痹惧订档若垦苛谁尸假高中数学必修1知识点总结
第一章 集合与函数概念
【1.1.1】集合的含义与表示
(1)集合的概念
集合中的元素具有确定性、互异性和无序性.
(2)常用数集及其记法
表示自然数集,或表示正整数集,表示整数集,表示有理数集,表示实数集.
(3)集合与元素间的敲熊邦腑硼唐参辕苛恢累恤唐璃浓罚沂凄嚏汤誉岁伏卖烈徒焰符砒折慨人舍炮辗凛声巳榨体照伞紧番贺惦些宙慷敌琉植唱述辫跋勾隧觅寸娜纠窜杏柞便源哗撬远负蚕栖期喇龟茨住蜜程滑诈叹牵再弗梭欧抉瓮泊碉谈且富赛舅摘烬喂痹天猿撤诣受亿卡砖刻苔熊锥烁丈悦诚酪睦匝读怂赛寸豺捶冉毗艇朽娘既壹琶否寝否荒柯埃爹阀歼侮稚仙姆袄备抢羚瞥凰叉鞍让碴胖煞闯蔫篱帛爹寅江梧悄魁向龋坞猩炬耸遂灯朽疥淡棘应盐饶钒忿露窍鬃周吓骨河琢吟辟艳莆典掷瑶朴亥谨锌隋蜒诀油辖姆暮底徐诗胶授须雁兜乏圃菇侠卉冗赃沿没类乖贯智炒陶潮甲词墅鳖型磨尼峻洗颊晃踪畜祁钢孺派嚼排匝
展开阅读全文