1、第3课时两角和与差的正切1.能够依据两角和与差的正弦公式和余弦公式导出两角和与差的正切公式,了解各个公式之间的内在联系.2.能够利用和差角的三角函数公式进行简洁的三角恒等变换.同学们好,上节课我们学习了两角差的余弦公式,并知道将公式进行适当的变形或变换后,可得到两角和与差的正弦、余弦公式.这节课我们将连续学习这种技巧,并由此推导出两角和与差的正切公式,以及正切公式的变形和有关的角度变换.问题1:在下列空白处填写适当的式子:cos(+)=cos cos -sin sin ,sin(+)=sin cos +cos sin .当时,得tan(+)=sin(+)cos(+)=sincos+cossin
2、coscos-sinsin,当时,分子分母同时除以,得:tan(+)=;在上式中,以代换得:tan(-)=.问题2:在公式tan(+)=tan+tan1-tantan中,、+均不等于;在公式tan(-)=tan-tan1+tantan中,、-均不等于.问题3:你能写出两角和与差的三角函数的6个公式的规律联系框图吗?问题4:由公式tan(-)=tan-tan1+tantan、tan(+)=tan+tan1-tantan可得下列变形公式:(1)tan +tan =tan(+);(2)tan -tan =tan(-) ;(3)tan(+)-(tan +tan )=;(4)tan(-)-(tan -t
3、an )=.1.不查表,求 3-tan151+3tan15的值为().A.1B.6+24C.32D.122.tan =2,则tan(-6)的值是().A.53-811B.8-53C.53-8D.8-53113.若tan(+4)=25,则tan =.4.求tan 15,tan 75的值.直接利用两角和与差的正切公式进行化简或求值求tan(6-)+tan(6+)+3tan(6-)tan(6+)的值.已知角的某种三角函数值求角已知tan(4+)=2,tan =12.(1)求tan 的值;(2)求sin(+)-2sincos2sinsin+cos(+)的值.两角和与差的正切公式的综合运用方程x2+3a
4、x+3a+1=0(a2)的两根为tan A,tan B,且A,B(-2,2),则A+B=.求值:(1+tan 1)(1+tan 2)(1+tan 3)(1+tan 45).已知02,tan =43,cos(-)=210.(1)求sin 的值;(2)求的值.已知角A是ABC的一个内角,若sin A+cos A=713,则tan(A+4)等于().A.-717B.717C.-712D.1251.已知sin x=55,x(2,32),则tan(x-4)的值为().A.0B.12C.-3D.-122.若cos(+)=15,cos(-)=35,则tan tan =().A.12B.-12C.32D.-3
5、23.已知tan(+)=25,tan(-4)=14,那么tan(+4)=.4.求下列各式的值:(1)1+tan751-tan75;(2)tan 17+tan 28+tan 17tan 28.(2010年新课标全国卷)已知为第三象限的角,cos 2=-35,则tan(4+2)=.考题变式(我来改编):答案第3课时两角和与差的正切学问体系梳理问题1:cos(+)0cos cos 0cos cos tan+tan1-tantan-tan-tan1+tantan问题2:k+2,kZk+2,kZ问题3:-诱导公式-诱导公式相除-相除问题4:(1-tan tan )(1+tan tan )tan(+)ta
6、n tan -tan(-)tan tan 基础学习沟通1.A3-tan151+3tan15=tan60-tan151+tan60tan15=tan(60-15)=tan 45=1.2.Ctan =2,tan(-6)=tan-tan61+tantan6=2-331+233=53-8,故选C.3.-37tan(+4)=tan+11-tan=25,5tan +5=2-2tan ,7tan =-3,tan =-37.4.解:tan 15=tan(45-30)=1-331+33=3-33+3=12-636=2-3.tan 75=tan(45+30)=1+331-33=3+33-3=12+636=2+3.
7、重点难点探究探究一:【解析】原式=tan(6-)+(6+)1-tan(6-)tan(6+)+3tan(6-)tan(6+)=3.【小结】在三角函数求值的问题中,要留意“三看”口诀,即(1)看角,把角尽量转化为特殊角或可计算的角,合理拆角,化异为同;(2)看名称,把算式尽量化成同一名称或相近的名称,例如把全部的切都转化为弦,或把全部的弦都转化为切;(3)看式子,看式子是否满足三角函数的公式.假如满足则直接使用,假如不满足则需转化一下角或转换一下名称.探究二:【解析】(1)由tan(4+)=2,得1+tan1-tan=2,即1+tan =2-2tan ,tan =13.(2)sin(+)-2sin
8、cos2sinsin+cos(+)=sincos+cossin-2sincos2sinsin+coscos-sinsin=-(sincos-cossin)coscos+sinsin=-sin(-)cos(-)=-tan(-)=-tan-tan1+tantan=-13-121+1312=17.【小结】对于给值求值问题,即由给出的某些角的三角函数的值,求另外一些角的三角函数值,关键在于“变角”,使“所求角”变为“已知角”,若角所在象限没有确定,则应分类争辩.留意公式的机敏运用,把握其结构特征,学会拆角、拼角等技巧.探究三:【解析】由题意知tan A+tan B=-3a,tan Atan B=3a+
9、1,tan(A+B)=tanA+tanB1-tanAtanB=-3a1-(3a+1)=1,A,B(-2,2), A+B(-,),A+B=4或-34.问题A+B=4成立吗?结论tan A+tan B=-3a7,tan A0,tan B0,又A,B(-2,2),A,B(-2,0),A+B(-,0).于是,正确解答如下:由题意知tan A+tan B=-3a7,tan A0,tan B0,A,B(-2,2),A,B(-2,0),A+B(-,0),tan(A+B)=tanA+tanB1-tanAtanB=-3a1-(3a+1)=1.A+B(-,0),A+B=-34.【答案】-34【小结】涉及三角函数值
10、是二次方程的根,除了要考虑二次方程有根的条件,还要留意依据根的符号和三角函数的意义确定角的范围.思维拓展应用应用一:若+=45,则1=tan 45=tan(+)=tan+tan1-tantan,tan +tan +tan tan =1,即(1+tan )(1+tan )=2,(1+tan 1)(1+tan 44)=(1+tan 2)(1+tan 43)=(1+tan 22)(1+tan 23)=2,原式=222(1+tan 45)=2222=223.应用二:(1)02,tan =43,sin =45.(2)02,sin =45,cos =35.又02,0-.由cos(-)=210,得sin(-
11、)=7210.sin =sin(-)+=sin(-)cos +cos(-)sin =721035+21045=25250=22.由2,得=34(或求cos =-22或tan =-1,得=34).应用三:A由sinA+cosA=713,sin2A+cos2A=1,得sinA=1213,cosA=-513或sinA=-513,cosA=1213(舍去),tan A=-125,tan(A+4)=1+tanA1-tanA=1+(-125)1-(-125)=-717,故选A.基础智能检测1.Csin x=55,x(2,32),cos x=-1-sin2x=-255,tan x=-12.tan(x-4)=
12、tanx-11+tanx=-12-11-12=-3,故选C.2.A由已知,得cos cos -sin sin =15,cos cos +sin sin =35,则有cos cos =25,sin sin =15,所以sinsincoscos=12,即tan tan =12.3.322tan(+4)=tan(+)-(-4)=tan(+)-tan(-4)1+tan(+)tan(-4)=322.4.解:(1)原式=tan45+tan751-tan45tan75=tan(45+75)=tan 120=-3.(2)tan(17+28)=tan17+tan281-tan17tan28,tan 17+tan 28=tan(17+28)(1-tan 17tan 28)=1-tan 17tan 28,原式=1-tan 17tan 28+tan 17tan 28=1.全新视角拓展-17cos 2=cos(+)=cos2-sin2=-35,又cos2+sin2=1且为第三象限的角,cos =-55,tan =2,tan 2=tan(+)=2tan1-tan2=-43,tan(2+4)=tan2+tan 41-tan2tan4=-17.思维导图构建tan+tan1-tantantan-tan1+tantantan(+)tan(-)