其次课时问题:1:从画出的图象中,你能发觉函数的图象与底数间有什么样的规律.从图上看(1)与(01)两函数图象的特征. 0问题2:依据函数的图象争辩函数的定义域、值域、特殊点、单调性、最大(小)值、奇偶性.问题3:指数函数(0且1),当底数越大时,函数图象间有什么样的关系.图象特征函数性质101101向轴正负方向无限延长函数的定义域为R图象关于原点和轴不对称非奇非偶函数函数图象都在轴上方函数的值域为R+函数图象都过定点(0,1)=1自左向右,图象渐渐上升自左向右,图象渐渐下降增函数减函数在第一象限内的图象纵坐标都大于1在第一象限内的图象纵坐标都小于10,10,1在其次象限内的图象纵坐标都小于1在其次象限内的图象纵坐标都大于10,10,15利用函数的单调性,结合图象还可以看出:(1)在(0且1)值域是(2)若(3)对于指数函数(0且1),总有(4)当1时,若,则;指数函数的图象和性质Y=ax图像a10a0时y1当x0时0y0时0y1 当x1是R上的增函数是R上的减函数例题分析例1 比较下列各题中两个数的大小:(1) 3 0.8 , 30.7 (2) 0.75-0.1, 0.750.1例2 (1)求使4x32成立的x的集合;(2)已知a4/5a ,求实数a的取值范围.练习p73 1,2作业p77习题3-3 A组 4,5 课后反思: