收藏 分销(赏)

高中数学(北师大版)选修2-1教案:第3章-椭圆-第二课时参考教案.docx

上传人:丰**** 文档编号:3809878 上传时间:2024-07-19 格式:DOCX 页数:3 大小:184.68KB 下载积分:5 金币
下载 相关 举报
高中数学(北师大版)选修2-1教案:第3章-椭圆-第二课时参考教案.docx_第1页
第1页 / 共3页
高中数学(北师大版)选修2-1教案:第3章-椭圆-第二课时参考教案.docx_第2页
第2页 / 共3页


点击查看更多>>
资源描述
3.1.2 椭圆的简洁性质 教学目标: (1)通过对椭圆标准方程的争辩,理解并把握椭圆的几何性质; (2)能够依据椭圆的标准方程求焦点、顶点坐标、离心率并能依据其性质画图; (3)培育同学分析问题、解决问题的力气,并为学习其它圆锥曲线作方法上的预备. 教学重点:椭圆的几何性质. 通过几何性质求椭圆方程并画图 教学难点:椭圆离心率的概念的理解. 教学方法:讲授法 课型:新授课 教学工具:多媒体设备 一、复习: 1.椭圆的定义,椭圆的焦点坐标,焦距. 2.椭圆的标准方程. 二、讲授新课: (一)通过提出问题、分析问题、解决问题激发同学的学习爱好,在把握新学问的同时培育力气. [在解析几何里,是利用曲线的方程来争辩曲线的几何性质的,我们现在利用焦点在x轴上的椭圆的标准方程来争辩其几何性质.] 已知椭圆的标准方程为: 1.对称性 复习关于x轴,y轴,原点对称的点的坐标之间的关系: 点(x,y)关于x轴对称的点的坐标为(x,-y); 点(x,y)关于y轴对称的点的坐标为(-x, y); 点(x,y)关于原点对称的点的坐标为(-x,-y); 问题2 在椭圆的标准方程中①以-y代y②以-x代x③同时以-x代x、以-y代y,你有什么发觉? (1) 在曲线的方程里,假如以-y代y方程不变,那么当点P(x,y)在曲线上时,它关于x的轴对称点P’(x,-y)也在曲线上,所以曲线关于x轴对称。 (2) 假如以-x代x方程方程不变,那么说明曲线的对称性怎样呢?[曲线关于y轴对称。] (3) 假犹如时以-x代x、以-y代y,方程不变,这时曲线又关于什么对称呢?[曲线关于原点对称。] 归纳提问:从上面三种状况看出,椭圆具有怎样的对称性? 椭圆关于x轴,y轴和原点都是对称的。 这时,椭圆的对称轴是什么?[坐标轴] 椭圆的对称中心是什么?[原点] 椭圆的对称中心叫做椭圆的中心。 2.范围 [我们要争辩椭圆在直角坐标系中的范围,就是争辩椭圆在哪个区域里,只要争辩方程中x,y的范围就知道了.] 问题1 方程中x、y的取值范围是什么? 由椭圆的标准方程可知,椭圆上点的坐标(x,y)都适合不等式 ≤1, ≤1 即 x2≤a2, y2≤b2 所以 |x|≤a, |y|≤b 即 -a≤x≤a, -b≤y≤b 这说明椭圆位于直线x=±a, y=±b所围成的矩形里。 3.顶点 [争辩曲线的上的某些特殊点的位置,可以确定曲线的位置。要确定曲线在坐标系中的位置,经常需要求出曲线与x轴,y轴的交点坐标.] 问题3 怎样求曲线与x轴、y轴的交点? 在椭圆的标准方程里, 令x=0,得y=±b。这说明白B1(0,-b),B2(0,b)是椭圆与y轴的两个交点。 令y=0,得x=±a。这说明白A1(-a,0),A2(a,0)是椭圆与x轴的两个交点。 由于x轴,y轴是椭圆的对称轴,所以椭圆和它的对称轴有四个交点,这四个交点叫做椭圆的顶点。 线段A1A2,B1B2分别叫做椭圆的长轴和短轴。 它们的长|A1A2|=2a,|B1B2|=2b (a和b分别叫做椭圆的长半轴长和短半轴长) 观看图形,由椭圆的对称性可知,椭圆短轴的端点到两个焦点的距离相等,且等于长半轴长,即     |B1F1|=|B1F2|=|B2F1|=|B2F2|= a 在Rt△OB2F2中,由勾股定理有 |OF2|2=|B2F2|2-|OB2|2 ,即c2=a2-b2 这就是在前面一节里,我们令a2-c2=b2的几何意义。 4.离心率 定义:椭圆的焦距与长轴长的比e=,叫做椭圆的离心率。 由于a>c>0,所以0<e<1. 问题4 观看图形,说明当离心率e变化时,椭圆外形是怎样随之变化的? [调用几何画板,演示离心率变化(分越接近1和越接近0两种状况争辩)对椭圆外形的影响] 得出结论:(1)e越接近1时,则c越接近a,从而b越小,因此椭圆越扁; (2)e越接近0时,则c越接近0,从而b越接近于a,这时椭圆就越接近于圆。 当且仅当a=b时,c=0,这时两个焦点重合于椭圆的中心,图形变成圆。 当e=1时,图形变成了一条线段。[为什么?留给同学课后思考] 5.例题 例1求椭圆16x2+25y2=400的长轴和短轴的长、离心率、焦点和顶点的坐标,并用描点法画出它的图形. [依据刚刚学过的椭圆的几何性质知,椭圆长轴长2a,短轴长2b,该方程中的a=?b=?c=?由于题目给出的椭圆方程不是标准方程,所以必需先把它转化为标准方程,再争辩它的几何性质] 解:把已知方程化为标准方程, 这里a=5,b=4,所以c==3 因此,椭圆的长轴和短轴长分别是2a=10,2b=8 离心率e== 两个焦点分别是F1(-3,0),F2(3,0), 四个顶点分别是A1(-5,0) A1(5,0) A1(0,-4) F1(0,4). [提问:怎样用描点法画出椭圆的图形呢?我们可以依据椭圆的对称性,先画出第一象限内的图形。] 将已知方程变形为 ,依据 在0≤x≤5的范围内算出几个点的坐标(x,y) x 0 1 2 3 4 5 y 4 3.9 3.7 3.2 2.4 0 先描点画出椭圆的一部分,再利用椭圆的对称性画出整个椭圆(如图) 说明:本题在画图时,利用了椭圆的对称性。利用图形的几何性质,可以简化画图过程,保证图形的精确     性。 依据椭圆的几何性质,用下面的方法可以快捷地画出反映椭圆基本外形和大小的草图: (1) 以椭圆的长轴、短轴为邻边画矩形; (2) 由矩形四边的中点确定椭圆的四个顶点; (3) 用平滑的曲线将四个顶点连成一个椭圆。 [画图时要留意它们的对称性及顶点四周的平滑性] (四)练习 填空:已知椭圆的方程是9x2+25y2=225, (1) 将其化为标准方程是_________________. (2) a=___,b=___,c=___. (3) 椭圆位于直线________和________所围成的________区域里. 椭圆的长轴、短轴长分别是____和____,离心率e=_____,两个焦点分别是_______、______,四个顶点分别是______、______、______、_______. 例2、求符合下列条件的椭圆的标准方程: (1)经过点(-3,0)、(0,-2); (2)长轴的长等于20,离心率等于0.6 例3 点与定点的距离和它到直线的距离之比是常数,求点的轨迹. (老师分析——示范书写) 例4、如图,一种电影放映灯泡的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲面) 的一部分。过对称轴的截口ABC是椭圆的一部分,灯丝位于椭圆的一个焦点F1上,片门位于另一个焦点F2上,由椭圆一个焦点F1发出的光线,经过旋转椭圆面反射后集中到另一个焦点F2。已知AC^F1F2,|F1A|=2.8cm,|F1F2|=4.5cm,求截口ABC所在椭圆的方程。 三、课堂练习: ①比较下列每组椭圆的外形,哪一个更圆,哪一个更扁? ⑴与 ⑵与(同学口答,并说明缘由) ②求适合下列条件的椭圆的标准方程. ⑴经过点 ⑵长轴长是短轴长的倍,且经过点 ⑶焦距是,离心率等于 (同学演板,老师点评) 焦点在x轴、y轴上的椭圆的几何性质对比. 四、小结 (1)理解椭圆的简洁几何性质,给出方程会求椭圆的焦点、顶点和离心率; (2)了解离心率变化对椭圆外形的影响; (3)通过曲线的方程争辩曲线的几何性质并画图是解析几何的基本方法. 五、布置作业
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服