收藏 分销(赏)

2021高考数学总复习专题系列——双曲线.板块一.双曲线的方程.学生版.docx

上传人:丰**** 文档编号:3812685 上传时间:2024-07-20 格式:DOCX 页数:3 大小:423.31KB
下载 相关 举报
2021高考数学总复习专题系列——双曲线.板块一.双曲线的方程.学生版.docx_第1页
第1页 / 共3页
2021高考数学总复习专题系列——双曲线.板块一.双曲线的方程.学生版.docx_第2页
第2页 / 共3页
点击查看更多>>
资源描述
板块一.双曲线的方程 典例分析 【例1】 双曲线的焦距为( ) A. B. C. D. 【例2】 双曲线方程为,则它的右焦点坐标为 A. B. C. D. 【例3】 双曲线的渐近线方程是( ) A. B. C. D. 【例4】 设双曲线的虚轴长为2,焦距为,则双曲线的渐近线方程为( ) A. B. C. D. 【例5】 动点与点、满足,则点的轨迹方程为(  ) A. B. C. D. 【例6】 已知双曲线的中心为原点,是的焦点,过的直线与相交于,两点,且的中点为,则的方程为( ) A. B. C. D. 【例7】 设圆的圆心在双曲线的右焦点且与此双曲线的渐近线相切,若圆被直线截得的弦长等于,则的值为( ) A. B. C. D. 【例8】 已知点是双曲线渐近线上的一点,是左、右两个焦点,若,则双曲线方程为( ) A. B. C. D. 【例9】 已知实数满足,则下列不等式中恒成立的是( ) A. B. C. D. 【例10】 已知椭圆和双曲线有公共的焦点,那么双曲线的渐近线方程是( ) A. B. C. D. 【例11】 到两定点.的距离之差的确定值等于的点的轨迹( ) A.椭圆 B.线段 C.双曲线 D.两条射线 【例12】 已知方程表示双曲线,则的范围为(  ) A. B. C. D.或 【例13】 已知双曲线的一条渐近线方程是,它的一个焦点在抛物线的准线上,则双曲线的方程为( ) A. B. C. D. 【例14】 设,分别为双曲线的左、右焦点.若在双曲线右支上存在点,满足,且到直线的距离等于双曲线的实轴长,则该双曲的渐近线方程为( ) A. B. C. D. 【例15】 若,则“”是“方程表示双曲线”的( ) A.充分不必要条件. B.必要不充分条件. C.充要条件 D.既不充分也不必要条件 【例16】 已知双曲线()的一条渐近线为,离心率,则双曲线方程为( ) A. B. C. D. 【例17】 设椭圆的离心率为,焦点在轴上且长轴长为.若曲线上的点到椭圆的两个焦点的距离的差的确定值等于,则曲线的标准方程为( ) A. B. C. D. 【例18】 双曲线的焦点在轴上,虚轴长为,离心率为,则双曲线的方程为_____________. 【例19】 经过定点,实轴长为,且焦点在轴上的双曲线的标准方程为      ,焦点坐标为__________,渐近线方程为_________. 【例20】 离心率为,且与双曲线有公共焦点的椭圆的标准方程为________. 【例21】 若双曲线的渐近线方程为,它的一个焦点是,则双曲线的方程是 ______. 【例22】 双曲线的左、右焦点与椭圆的焦点相同,且离心率互为倒数,则双曲线的方程是______________;它的渐近线的方程是__________. 【例23】 已知双曲线的离心率,过点的直线到原点的距离是,那么 . 【例24】 一个焦点为,且离心率为的双曲线的标准方程为_________,顶点坐标为_________,虚轴长为_________,渐近线方程为__________. 【例25】 椭圆与双曲线的焦点相同,则 . 【例26】 已知双曲线的离心率为2,焦点与椭圆的焦点相同,那么双曲线的焦点坐标为 ;渐近线方程为 . 【例27】 如图,是双曲线的实半轴,是虚半轴,为焦点,且,,则设双曲线方程是 . 【例28】 已知点是双曲线上一点,双曲线两个焦点间的距离等于,则该双曲线方程是 . 【例29】 是双曲线上一点,、是双曲线的两个焦点,且,求的值. 【例30】 依据下列条件,求双曲线的标准方程. ⑴,经过点,焦点在轴上. ⑵与双曲线有相同焦点,且经过点. 【例31】 已知下列双曲线方程,求它们的焦点坐标、顶点坐标、渐近线方程,以及焦距、实轴和虚轴长,并在同一坐标系中分别画出这两个双曲线的图象. ⑴ ⑵ 【例32】 求顶点间的距离为,渐近线方程为的双曲线的标准方程. 【例33】 设双曲线与椭圆有共同的焦点,且与椭圆相交,一个交点的纵坐标为,求双曲线的方程. 【例34】 已知双曲线的实轴长为,点是双曲线上的一点, ⑴求此双曲线的方程; ⑵写出双曲线的离心率、渐近线方程; ⑶与此双曲线有共同的焦点,且离心率为的椭圆的标准方程. 【例35】 中心在原点,焦点在轴上的一个椭圆与一双曲线有共同的焦点、,且,椭圆的长轴长与双曲线的实轴长之差为,离心率之比为,求这两条曲线的方程. 【例36】 求与双曲线共渐近线且过点的双曲线方程. 【例37】 已知双曲线:的实半轴长与虚半轴长的乘积为,的两个焦点为,直线过,且与线段的垂直平分线交点为,线段与双曲线交点为,,,求双曲线的方程. 【例38】 争辩表示何种圆锥曲线,它们有何共同特征. 【例39】 已知双曲线与椭圆共焦点,它们的离心率之和为,求双曲线方程. 【例40】 已知点和,动点到、两点的距离之差的确定值为,点的轨迹与直线交于、两点,⑴求轨迹的方程;⑵求线段的长. 【例41】 已知椭圆的中心在原点,焦点在坐标轴上,焦距为,另一双曲线与此椭圆有公共焦点,且其实轴比椭圆的长轴小,两曲线的离心率之比为,求此椭圆、双曲线的方程. 【例42】 已知双曲线的中心在原点,过右焦点作斜率为的直线,交双曲线于两点,且,求双曲线方程.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服