收藏 分销(赏)

PEG对生物可降解聚氨酯性能影响的研究资料讲解.doc

上传人:精**** 文档编号:3791887 上传时间:2024-07-18 格式:DOC 页数:8 大小:672KB
下载 相关 举报
PEG对生物可降解聚氨酯性能影响的研究资料讲解.doc_第1页
第1页 / 共8页
PEG对生物可降解聚氨酯性能影响的研究资料讲解.doc_第2页
第2页 / 共8页
PEG对生物可降解聚氨酯性能影响的研究资料讲解.doc_第3页
第3页 / 共8页
PEG对生物可降解聚氨酯性能影响的研究资料讲解.doc_第4页
第4页 / 共8页
PEG对生物可降解聚氨酯性能影响的研究资料讲解.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、PEG对生物可降解聚氨酯性能影响的研究田存1 周青1* 喻建明1 王彤2 臧洪瑞2(1. 北京科聚化工新材料有限公司 102200) (2. 北京同仁医院 100730)摘要:以不同分子量的聚乙二醇(PEG)为引发剂,通过开环聚合引发丙交酯和己内酯单体合成聚己内酯-丙交酯-聚乙二醇(PCLA-PEG)的共聚物;用六亚甲基二异氰酸酯(HDI)对合成的共聚物进行封端,并进行扩链反应制备一系列PEG含量不同的生物可降解聚氨酯。通过红外以及DSC研究了PEG含量对聚氨酯材料结构的影响,发现采用分子量较高的PEG制备的材料,其软硬段相分离程度较高;另外对样品进行了力学性能、亲水性及降解性进行了测试,发现

2、PEG含量增加,样品的力学性能下降,亲水性能提高,降解速度加快。关键词:聚己内酯-丙交酯;聚乙二醇;生物降解; 生物医用聚氨酯材料具有良好的机械性能、生物相容性、血液相容性以及易加工等特点,被认为是最具有价值的医用合成材料之一。现代医学的治疗对生物高分子材料提出更高的要求,在骨折内固定、人工皮肤、人工血管以及药物控制缓释放等方面,经常需要一些暂时性的医用材料,这就期望高分子材料不仅有良好的生物相容性,而且在创伤愈合或药物缓释放过程中可生物降解和降解产物容易被吸收或代谢,免除了患者二次手术的痛苦。聚己内酯和聚丙交酯降解后无毒副作用,因此常用其作为软段制备聚氨酯,但是聚己内酯和聚丙交酯均聚物易结晶

3、,降解速率较低1,2,3,而加入PEG可以提高其降解速率4。因此本文选择用聚乙二醇为引发剂合成聚己内酯/丙交酯共聚物作为聚氨酯的软段,将亲水性较强的PEG引入到分子链中,并且选用脂肪族异氰酸酯,六亚甲基二异氰酸酯(HDI)5和1,4-丁二醇(BDO)为硬段,考察软段中PEG含量不同对材料结构与性能的影响。1 实验部分1.1 主要原料丙交酯,冷冻密封保存,北京元生融科技有限公司。-己内酯,工业级,青岛华元聚合物有限公司,通过氢化钙脱水,然后减压蒸馏得到除水的-己内酯。六亚甲基二异氰酸酯(HDI),工业级,烟台万华聚氨酯股份有限公司。1,4-丁二醇(BDO),分析纯,天津市津科精细化工研究所,真空

4、脱水后使用。聚乙二醇(PEG),分子量为400,600,1000,化学纯,真空脱水。辛酸亚锡(T9),分析纯,天津市永大化学试剂开发中心。1.2 聚己内酯-丙交酯-聚乙二醇共聚物的合成为了准确的称量催化剂(T9),将其稀释在-己内酯单体中,配成浓度为1%的溶液。然后称取计量的-己内酯、丙交酯以及起始剂PEG等于干燥的三口烧瓶中,常温搅拌均匀,缓慢升温至预定温度130,在氮气保护下反应24小时结束。样品冷却后加入甲醇洗涤未反应的单体,聚合物沉淀析出;最后将聚合物在40真空烘箱中干燥4小时除去残留的甲醇得到聚合物(PCLA-PEG400,PCLA-PEG600和PCLA-PEG1000),设计聚合

5、物的分子量均为2000。图1为合成PCLA-PEG的反应式。图1 合成PCLA-PEG的反应式1.3 可降解聚氨酯材料的制备取一定量的聚合物,加入过量的HDI,在60条件下反应4小时,然后采用正己烷将游离的HDI洗涤除去,得到HDI封端的聚氨酯预聚体,分别命名为HP400,HP600和HP1000,取样测试NCO含量。根据测试的NCO结果,加入一定配比的BDO进行扩链,将样品倒入聚四氟模具中成膜,得到可降解的聚氨酯材料,分别命名为HP400-BDO、HP600-BDO和HP1000-BDO。1.4 测定与表征1.4.1 体系中异氰酸酯基团含量采用电位滴定法测定预聚体中NCO的含量。试样中的异氰

6、酸酯与过量的二正丁胺在室温下反应生成相应的取代脲,然后用盐酸标准液滴定溶液,滴定剩余的胺,并计算出异氰酸酯浓度6。1.4.2 结构表征:采用Nexus-870型红外光谱分析仪(FTIR-ATR),衰减全反射,背景及样品各扫描32次,分辨率4cm-1,测量范围是500-4000cm-1进行测试。1.4.3 采用示差扫描量热法(DSC):用瑞士梅特勒-托利多公司的822e 型差示扫描量热仪进行DSC分析,升温速度10/min,实验温度是-80300,氮气氛围。1.4.4 力学性能测试:利用电子万能材料试验机(RGT-5型,深圳瑞格尔公司),执行GB/T528-1998 标准,拉力实验一律用4mm宽

7、裁刀制哑铃片,拉伸速率为200mm/min,标距为25mm,测试温度为(232)。1.4.5接触角测试:在上海中晨数字设备有限公司的JCK2000型接触角测量仪上进行静态水接触角的测试,每个样品取三个点的平均值为测试结果。1.4.6降解性能:根据国标GB/T6682配置Ph值为7.53缓冲溶液,称取一定量的样品放置在37的缓冲溶液中,每隔一段时间取样,将样品干燥后称重,通过重量的损失来表征样品的降解性能。2 结果与讨论2.1 PEG对材料结构的影响所合成的聚氨酯软段分子量相同,不同的是软段聚合物PCLA-PEG中PEG的含量不同,不同的PEG含量对聚氨酯的微观结构有较大的影响。聚氨酯材料硬段有

8、氨基甲酸酯,软段有醚键和酯键,硬段之间以及软硬段之间容易形成氢键,表现为红外光谱羰基吸收峰向低波数迁移,从而使羰基显现出自由的和氢键化两种明显分离的特征吸收峰6。图2. PU的红外谱图图2为PEG含量不同的聚氨酯涂膜的红外谱图。样品1的羰基吸收峰分裂为四个,分别为1740cm-1、1716cm-1、1685cm-1和1668cm-1,1740 cm-1处的特征吸收峰分别归属为:聚己内酯-丙交酯-聚乙二醇中的自由的羰基吸收峰,1716cm-1为软段和硬段形成氢键化的羰基吸收峰,1685cm-17为脂肪族聚氨酯中氨基甲酸酯自由羰基吸收峰,而1668cm-1为硬段微区中形成氢键化的羰基吸收峰。171

9、6cm-1处特征吸收峰的出现,说明硬段和软段形成了氢键,有部分相容,但样品2和3在1716cm-1和1685cm-1处的特征吸收峰逐渐减弱,说明随着PEG分子量增加,软段和硬段之间形成的氢键逐渐减少,相容性逐渐下降,微相分离程度增加。因为在软段分子量相同时,当PEG分子量增高时,-己内酯/丙交酯的含量相对下降,而PEG相比-己内酯/丙交酯共聚物对氨基甲酸酯相容性更弱一些。聚氨酯的微相分离通过DSC表征,软段的玻璃化转变温度越低8,则软硬段的微相分离程度越高。图3和表1给出了样品的DSC谱图和数据,可以看出,随着PEG分子量的增加,软段的玻璃化转变温度逐渐降低,这说明软硬段的相容性减弱,这和红外

10、的表征结果一致。图3 样品的DSC图表1 样品的DSC数据样品玻璃化转变温度()HP400-BDO-17.80HP600-BDO-26.51HP1000-BDO-38.022.2 PEG对材料力学性能的影响图4 样品的应力应变曲线表2 样品的力学性能数据样品拉伸强度(MPa)断裂伸长率(%)HP400-BDO30.78425.53HP600-BDO27.46493.13HP1000-BDO-N226.47503.66 软段的成分不同,对聚氨酯的力学性能也有较大的影响,图4和表2给出了PEG含量不同的PU的力学性能数据。可以看出样品1的拉伸强度为30.78MPa,断裂伸长率为425.53%,随着

11、PEG含量的增加,样品2和3的拉伸强度逐渐下降,一方面是因为PEG为聚醚,分子链较柔软,力学性能较差9,另一方面是PEG降低软硬段之间形成氢键的能力,使材料的力学性能下降。2.3 PEG对材料亲水性的影响 生物材料的亲水性好坏对其生物相容性十分重要。聚氨酯的表面亲水性可以通过水接触角实验获得,水接触角越小,聚氨酯表面亲水性越好。聚己内酯-丙交酯直接制备聚氨酯材料,其材料的亲水性较差,而引入亲水性较强的聚乙二醇,使聚合物有一定的亲水性。由图5、6和7以及表3可以看出,随着PEG含量的增加,样品与水的接触角逐渐减小,亲水性增加。 图5 测试接触角的照片(HP400-BDO) 图6 测试接触角的照片

12、(HP600-BDO) 图7 测试接触角的照片(HP1000-BDO)表3 样品的接触角数据样品接触角(o)HP400-BDO84HP600-BDO80HP1000-BDO68.252.4 PEG对降解性的影响 通常采用在37的磷酸缓冲溶液中的降解来评价生物材料在自然条件下或生物体内的降解情况。图8为样品在37的磷酸缓冲溶液中的降解的失重曲线。可以明显的看出,三个样品都发生了降解,样品3的降解速率最快,最终的失重率也最高,为25%,样品2和1次之,说明随着PEG含量的增高,聚氨酯的降解速率最快,这是因为PEG含量高时,样品的吸水性强,同时软硬段之间氢键化程度较弱,有利于水分子进入到材料内部,使

13、其降解速率增加10。图8 生物可降解材料降解失重率曲线3 结语本实验以不同分子量的聚乙二醇(PEG)为引发剂,合成聚己内酯-丙交酯-聚乙二醇(PCLA-PEG)的共聚物为聚氨酯的软缎,用六亚甲基二异氰酸酯(HDI)对共聚物进行封端并扩链,制备一系列PEG含量不同的生物可降解聚氨酯。通过红外以及DSC研究了PEG含量对聚氨酯材料结构的影响,发现采用分子量较高的PEG制备的材料,其软硬段相分离程度较高;另外对样品进行了力学性能、亲水性及降解性进行了测试,发现PEG含量增加,样品的力学性能下降,亲水性增加,降解性增加。参考文献1Wang J H, Yao C H, Chuang W Y, at al

14、. Development of biodegradable polyester-urethane membranes with different surface morphologies for the culture of osteoblastsJ. Journal of Biomedical Materials Research, 2000, 51(4):761-77021赵耀明, 周玲, 汪朝阳. 聚(己内醋-乳酸)的直接熔融法合成及表征J. 华南理工大学学报, 34(7):7-113Skarja G A, Woodhouse K AIn vitro degradation and

15、erosion of degradable segmented polyurethanes containing amino acidbased chain extenderJJ Biomater Sci Polymer, 2001(12):851-8734Skaljag A, Woodhouse K AStructure-property relationships of degradable polyurethane elastomers containing an amino acid-based chain extenderJJournal of Applied Polymer Sci

16、ence, 2000(75):1522 -1534字典 - 查看字典详细内容5Woo G L Y, Mittelman M W, Santerre J PSynthesis and characterization of a novel biodegradable antimicrobial polymerJBiomaterials, 2000(21):1235-12466Yilgor E, Yilgor I, Yurtsever E. Hydrogen bonding and polyurethane morphology. I. Quantum mechanical calculation

17、s of hydrogen bond energies and vibrational spectroscopy of model compounds J. Polymer, 2002,(43): 6551-65597汪金花. 聚氨酯红外光谱定量方法及聚集态结构行为研究D, 合肥:中国科学技术大学, 20078李洁华, 丁明明, 殷争艳. 含PCL-PEG-PLA三嵌段共聚物的可降解聚氨酯的合成及表征J. 2007(39):118-123 朗读显示对应的拉9 方少明, 周立明, 张留成. IPDI/HEMA/PEG大单体的合成及其聚合物的制备J. 高分子材料科学与工程, 2004(20) : 109-122 10 吴之中. 聚乳酸-聚乙二醇嵌段共聚物及其交联聚氨酯弹性体的性能研究J. 1999(12): 166-169

展开阅读全文
相似文档                                   自信AI助手自信AI助手
猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服