1、41Municipal EngineeringTianjin Construction Scienceand Technology2023年8 月市政工程天津建设科技第3 3 卷第4 期空间异形桥塔钢混结合段空问受力分析陈龙1,2,3(1.天津大学建筑工程学院,天津3 0 0 0 5 1;2.天津市政工程设计研究总院有限公司,天津3 0 0 3 9 2;3.天津市基础设施耐久性企业重点实验室,天津3 0 0 0 5 1)【摘要】:针对斜拉桥桥塔钢混结合段构造受力复杂问题,以如意岛跨海大桥主桥异形桥塔的钢混结合段为研究对象,采用空间有限元方法,建立全桥空间杆系模型进行整体静力分析,确定钢混结合段
2、最不利荷载工况,得到荷载边界条件;再利用Midas/FEA建立三维实体模型,进行受力分析,明确结合段混凝土、钢板及钢绞线的受力情况。分析结果表明:该桥塔钢混结合段构造方式合理,混凝土、钢板及钢绞线的应力水平均较小,结构安全可靠。【关键词】:跨海大桥;异形桥塔;钢混结合段;受力分析【中图分类号】:U441.5【文献标志码】:C【文章编号】:1 0 0 8-3 1 9 7(2 0 2 3)0 4-4 1-0 6【D O I 编码】:1 0.3 9 6 9/j.issn.1008-3197.2023.04Spatial Force Analysis of the Steel Concrete Com
3、posite Section ofASpatial IrregularBridgeTowerCHEN Long12.3(1.School of Civil Engineering,Tianjin University,Tianjin 300051,China;2.Tianjin Municipal Engineering Design&Research Institute Co.Ltd.,Tianjin 300392,China;3.Tianjin Infrastructure Durability Enterprise Key Laboratory,Tianjin 300051,China)
4、Abstract:In response to the complex structural stress problem of the steel-concrete composite section of the cable-stayed bridge tower,this article takes the steel-concrete composite section of the irregular bridge tower of theRuyi Island Cross Sea Bridge as the research object.Using spatial finite
5、element method,a full bridge spatialmember system model is established for overall static analysis to determine the most unfavorable load condi-tions of the steel-concrete composite section,obtain the load boundary conditions,and then use Midas/FEAto establish a three-dimensional solid model for str
6、ess analysis,clarify the stress conditions of the concrete,steel plates,and steel strands in the bonding section.The analysis results indicate that the construction meth-od of the steel-concrete composite section of the bridge tower is reasonable,and the stress levels of the con-crete,steel plates,a
7、nd steel strands are relatively low,making the structure safe and reliable.Key words:cross sea bridge;irregular bridge towers;steel concrete combination section;force analysis近年来,钢混组合桥塔逐渐应用于斜拉桥。钢收稿日期:2 0 2 2-0 5-2 0作者简介:陈龙(1 9 8 5),男,博士,高级工程师,从事桥梁结构设计工作混结合桥塔具有诸多优势,如:可以有效降低地震作用;减小塔柱顶部施工难度;钢锚箱的安装精度更好等
8、。桥塔钢混结合段是刚度突变的过渡段,结构受力复杂,钢板和混凝土的受力机理不易明确,必须采用42第3 3 卷第4 期天津建设科技Municipal Engineering市政工程空间实体分析方法分析不利荷载工况下的受力情况,相关人员对桥塔钢混结合段进行了研究 2 7。目前大多数钢混结合桥塔将结合段放置在下塔柱与下横梁交汇处 2.5,如意岛跨海大桥桥塔形式特殊,为倾斜桥塔,桥塔钢混结合段平面为回字形结构,结合段采用钢格室与混凝土结合形式,钢板与混凝土相互约束的状态极为复杂,钢混结合段设置在承台顶面。为了得出如意岛跨海大桥桥塔钢混结合段混凝土、钢板及钢绞线受力性能,本文利用板壳实体单元对桥塔钢混结合
9、段进行局部空间受力分析。1工程概况如意岛跨海大桥海上段长约4.6 km;主桥布置为70m+80m+200m+80m+70m双塔双索面斜拉桥,双向6 车道(含2 车道有轨电车),全宽2 9.5 m;桥塔全高123.727m,主塔分为结构部分和塔冠部分,结构部分又分为上塔柱、中塔柱、下塔柱、塔座以及横梁5 部分。桥梁设计基本地震加速度值为0.3 2 g,地震作用大,桥塔采用钢结构桥塔,在承台顶部设置钢混结合段。见图1 和图2。50070802008070127.5127.5海口如意岛33.533.5通航净空1 6 0 x26年平均水位0.5海床面-1 2.0-89.5-89.5单位:ma)桥型布置
10、2.950100950850950100索区行车道有轨电车行车道索区2%2%单位:cmb)横断面布置图1主桥塔冠上塔柱中塔柱下塔柱横梁塔座a)布置26.08主跨侧塔冠31.747上塔柱123.72713.63740.2中塔柱横梁26.29238.622.2下塔柱2220.638.2b)正立面构造c)侧立面构造单位:m图2桥塔每座桥塔有4 根下塔柱,塔柱外围钢板厚度均为42mm。钢板上布置尺寸为2 0 0 mm20mm平板加劲肋、间距4 5 0 6 0 0 mm。下塔柱距承台顶5.5 5 m范围内断面为双层“回”字形,内部灌注混凝土,设有预应力钢束,钢板上焊有剪力钉。见图3。C50微膨胀5.55
11、混凝土S承台6.56.3分跨线a)顺桥向43Municipal Engineering陈龙:空间异形桥塔空间受力分析第3 3 卷第4 期市政工程C50微胀5.55混凝土+承台7.73.33.37.7桥面中心线b)横桥向外壁钢板8=423.63.451.55内壁钢板8=206.56.3顺桥向6.56.3内壁钢板8=2055S3.63.4外壁钢板8=42c)承台顶塔壁钢板加劲肋锚下钢板混凝土填充d)三维单位:m图3桥塔钢混结合段构造预应力钢束为每束9 根15.2mm高强低松弛钢绞线,沿塔壁内侧均匀布置,边跨侧下塔柱布置3 5 束,中跨侧下塔柱布置3 4 束;在下塔柱内张拉,锚固端位于承台内。下塔柱
12、外圈钢板插入承台混凝土内,插人深度4 m,钢板两侧焊有剪力钉。见图4。图4桥塔钢混结合段钢束布置2模型建立先采用Midas/Civil建立全桥杆系模型,得到钢混结合段顶内力,再通过局部板壳实体有限元模型分析局部应力情况2.1整体杆系模型主梁、塔柱及承台基础采用空间梁单元模拟,斜拉索采用架单元,通过整体模型计算分析,得出正常使用极限状态塔底座上部最不利荷载组合内力,再在实体模型中作为塔座局部分析的外部荷载,承台底部按照固结模拟。见图5。图5主桥杆系模型通过整体计算建模分析得到底座局部计算加载值,取最不利荷载组合。见表1。表1最不利荷载组合内力顺桥向横桥向顺桥向横桥向轴向/扭矩/位置剪力/剪力/弯
13、矩/弯矩/kN(kNm)kNkN(kNm)(kNm)边跨-32.9081669-5139.24327 241-363主跨-84502.71747215778856-2.6612.2局部实体模型塔底座局部计算采用Midas/FEA软件,混凝土采44天津建设科技第3 3 卷第4 期Municipal Engineering市政工程用实体单元模拟、钢板采用板单元模拟、预应力钢束采用钢筋单元模拟,其中钢筋单元可与穿过的实体单元实现自动耦合,模型取横向1/2 对称。见图6。图61/2横桥向实体模型每个塔壁由4 块钢板围焊组成,钢板上设有变高度加劲肋。下塔柱外钢板及锚下钢板板厚4 2 mm,加劲板板厚3
14、0 mm,承台混凝土强度等级为C35,结合段混凝土强度等级为C40,预应力钢绞线标准抗拉强度1860MPa;上端张拉,张拉控制应力1 2 0 0 MPa。见图7-图9。图7外钢板模型图8加劲板模型图9预应力及锚下钢板模型3计算结果与分析3.1应力3.1.1塔壁钢板最大拉应力1 0 0.6 1 MPa,最大压应力9 3.6 8 MPa,换算应力9 9.1 5 MPa,最大剪应力5 5.6 MPa。最大拉应力出现在塔壁与锚下钢板及混凝土连接位置角点,应力集中较明显,结果偏大,其余位置拉应力基本50MPa,进人钢混结合段钢板基本受压。见图1 0。1.006091020.0%9.23683100.0%
15、8.41276x100.0%7.58867100.0%6.7646210Min-31.24240.0%5.94054100.0%Max100.65.11647100.2%4.29240100.7%3.46833101.9%2.64426102.3%1.82019103.8%9.9611518.8%1.7204466.5%-6.520285.4%-1.47610100.3%-2.30017100.0%-3.1242410a)最大主应力1.88006100.0%1.17702100.7%4.739925.6%-2.2905823.8%-9.32072Min-93.6&4518.3%-1.63510
16、1011.2%Max18.8006-2.338141011.0%-3.041171010.4%-3.74420106.5%-4.44723103.6%-5.15026102.1%-5.85329101.5%-6.55633x101.9%-7.259.36x102.2%-7.962.39101.0%-8.66542100.2%-9.3684510b)最小主应力9.91452100.1%9.29647100.2%8.678.42100.9%8.06035x102.0%7.44231102.0%6.82426x1099.145.4%6.2062010475.588151002564.97010104
17、.35204103.733.99103.11594x102.49789101.879.83101.26178106.437262.56725101c)换算应力45Municipal Engineering陈第3 3 卷第4 期龙:空间异形桥塔钢混段空间受力分析市政工程5.56356x100.0%5.21685100.0%4.87014100.0%4.52342100.3%4.17672101.7%3.8300210Max55.62.1%63.48331101.9%3.1366010Mino.162241.8%2.78989102.1%2.44318104.0%2.09647108.1%1.74
18、9771010.4%1.403061013.1%1.056351016.2%19.1%7.096393.6293119.0%1.6222410-ld)最大剪应力单位:MPa图1 0塔壁钢板受力3.1.2加劲板及锚下钢板最大拉应力7 5.6 MPa,最大压应力9 2.2 MPa,换算应力8 8.4 MPa,最大剪应力4 8.6 MPa。其中最大拉应力、最大换算应力和最大剪应力均出现在钢塔壁与锚下钢板及混凝土连接位置角点,表现出明显的应力集中。见图1 1。7.56444100.0%6.72927100.0%5.89409100.1%5.05890100.4%4.223.75101.2%Max756
19、4422.3%3.38858102.55340104.3%1.7182310Min-5798326.0%8.8305738.5%44.5%4.7884310-1-7.872.881.2%-1.622.46100.6%0.3%2.4576310一0.2%-3.29281100.1%4.1279810一0.1%-4.9631510-5.7983210a)最大主应力4.36801x100.0%3.51861100.0%2.66921x100.0%1.81979100.3%9.704084.0%1.21007Min-92x43.680166.7%7.2839414.2%1.57779104.2%-2.
20、42719103.0%-3.27660102.6%-4.12600101.8%-4.97540101.4%-5.82480100.8%-6.67420100.6%-7.52360100.3%-8.37300100.1%-9.2224010b)最小主应力8.83591x100.0%8.28367100.1%7.73142100.2%7.17917100.5%6.62694100.8%6.0746910Max883591.2%5.52245101.9%4.97020102.6%4.41796102.9%3.86571103.5%3.31347103.9%2.76122104.1%2.2089810
21、4.5%1.65673106.8%1.104491019.7%5.5224547.3%8.5296310-8c)板换算应力4.85581100.0%4.55232100.0%4.24883100.0%3.945341010.0%3.64186100.1%.48.5583.33837100.1%3.03488100.5%2.73139x101.2%2.42791102.2%2.124.42103.0%1.82093103.9%1.51744104.6%5.1%1.21395109.10465107.4%6.069.7619.8%52.2%6.03488Min414679X4.1467910-8d
22、)最大剪应力单位:MPa图1 1加劲板及锚下钢板受力3.1.3混凝土应力较小,扣除局部应力集中及计算引起的误差,最大拉应力2.1 5 MPa,出现在塔壁钢板钝角处附近混凝土位置。见图1 2。334K82单位:MPa图1 2混凝土最大主应力3.1.4预应力钢束最大应力1 2 0 0 MPa,最小应力1 0 3 6 MPa,应力幅变化不大。见图1 3。46天津建设科技第3 3 卷第4 期Municipal Engineering市政工程1.2000410345.7%1.18981x10327.0%1.179.5710316.5%1.169341035.6%1.159111031.0%1.14887
23、1030.7%1.138 641030.8%1.128411030.8%1.118171030.7%1.107941030.5%1.097711030.2%1.087471030.2%1.077241030.1%1.067011030.1%1.056781030.0%1.046541030.0%1.03631103单位:MPa图1 3预应力钢束应力3.2位移结构竖向最大位移1 0.2 2 mm,对比Midas/Civil整体模型计算结果3 0.7 1 5-2 0.4 9 3=1 0.2 2 2(mm)可知,两者结果一致。见图1 4。1.258 2110-280.8%-6.2713810-110
24、.6%-1.266861.9%-1.906591.1%-2.546300.9%-3.186020.9%-3.825740.8%-4.465 460.7%-5.105180.6%-5.744.900.5%-6.384 620.5%-7.024340.3%-7.664 060.2%-8.303780.1%-8.943500.0%-9.583220.0%-1.0222910a)Midas/FEA30715-31.624-29.09329.93g28.84529.688-27380-28.22725.677-26.55224.37225.27824:054-24.97020.493-21.58620.
25、883b)Midas/Civil单位:mm图1 4位移计算计果4结论1)由空间实体模型分析结果可知,钢混结合段整体变形较小,内力传递平顺,钢板和混凝土应力水平较低,安全储备良好,结构构造比较合理。2)由塔壁钢板应力情况可知:塔壁钢板整体平均应力在5 0 MPa以内,远低于钢材屈服强度,安全储备高;最大拉应力出现在钢塔壁与锚下钢板及混凝土连接位置角点,应力集中较明显。说明钢混结合段在结合刚度突变处采用预应力加承压板方式容易应力集中,可考虑再往上设置一段刚度过渡钢板3)由加劲板及锚下钢板应力情况可知:加劲板应力水平较为平均且应力不大。锚下钢板由于预应力的设置会产生一定的应力集中,但整体应力水平均较
26、低,可以适当在锚下设置一定的局部承压钢筋网片。4)由混凝土应力计算情况可知:混凝土应力较小,最大拉应力出现在塔壁钢板钝角处附近混凝土位置。该范围处于海洋环境浪溅区,易受海水腐蚀,应尽量控制不出现拉应力,应在此处布设加强钢筋,同时在承台顶浪溅区范围采用矿脂包覆防腐蚀技术。5)钢混结合段受力复杂,建立空间有限元实体模型进行局部分析具有必要性。参考文献:1李达.钢一混凝土塔座预应力结合段受力性能研究 D.西安:长安大学,2 0 1 1.2张辉,徐声亮.空间异形混合桥塔钢混凝土结合段有限元分析 J.城市道桥与防洪,2 0 1 7,(4):7 8-8 0+8 7.3乐小刚,杨勇,宁平华.绵阳三江大桥桥塔钢一混凝土结合段受力性能分析 J.中外公路,2 0 1 5,3 5(1):1 7 1-1 7 3.4李焱.桥塔钢-混凝土结合段设计与受力分析 J.天津建设科技,2 0 1 9,2 9(3):4 7-5 0.5万杰龙,曾明根,吴冲,等.摄乐大桥桥塔钢混结合段受力分析 J.城市道桥与防洪,2 0 1 7,(3):9 7-1 0 1+1 4 1+1 2.6张西丁,石雪飞.拱塔斜拉桥桥塔钢一混结合段空间受力分析.交通科学与工程,2 0 1 3,2 9(2):3 5-4 0+5 5.7孙东利,周莉,谢斌.斜拉桥钢塔塔墩锚固设计与分析 J.中外公路,2 0 1 2,3 2(6):1 9 2-1 9 5.