收藏 分销(赏)

安徽省皖南地区2022-2023学年数学高一上期末复习检测试题含解析.doc

上传人:快乐****生活 文档编号:2878558 上传时间:2024-06-07 格式:DOC 页数:13 大小:718.04KB
下载 相关 举报
安徽省皖南地区2022-2023学年数学高一上期末复习检测试题含解析.doc_第1页
第1页 / 共13页
安徽省皖南地区2022-2023学年数学高一上期末复习检测试题含解析.doc_第2页
第2页 / 共13页
安徽省皖南地区2022-2023学年数学高一上期末复习检测试题含解析.doc_第3页
第3页 / 共13页
安徽省皖南地区2022-2023学年数学高一上期末复习检测试题含解析.doc_第4页
第4页 / 共13页
安徽省皖南地区2022-2023学年数学高一上期末复习检测试题含解析.doc_第5页
第5页 / 共13页
点击查看更多>>
资源描述

1、2022-2023学年高一上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1已知函数f(x)(aR),若函数f(x)在R上有两个零点,则a的取值范围是()A.(,1)B.(,1)C.(1,0)D.1,0)2函数f(x)

2、=2x+x-2的零点所在区间是()A.B.C.D.3在中,已知,则角()A.B.C.D.或4若函数在区间上单调递增,则实数的取值范围是()A.B.C.D.5已知一几何体的三视图,则它的体积为 A.B.C.D.6幂函数,当时为减函数,则实数的值为A.或2B.C.D.7设,则a,b,c的大小关系是( )A.B.C.D.8已知函数,则函数的值域为()A.B.C.D.9设,若,则的最小值为()A.B.6C.D.10函数的部分图象如图所示,则可能是( )A.B.C.D.11 ()A.0B.1C.6D.12已知点的坐标分别为,直线相交于点,且直线的斜率与直线的斜率的差是1,则点的轨迹方程为A.B.C.D.

3、二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13已知幂函数为奇函数,则_.14已知函数的图象恒过点P,若点P在角的终边上,则_15若圆锥的侧面展开图是圆心角为的扇形,则该圆锥的侧面积与底面积之比为_.16已知f(x)=mx3-nx+1(m,nR),若f(-a)=3,则f(a)=_三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17如图,在几何体ABCDEF中,平面平面ABFE正方形ABFE的边长为2,在矩形ABCD中,(1)证明:;(2)求点B到平面ACF的距离18已知,.(1)求;(2)若角的终边上有一点,求.19已知

4、函数.(1)求函数的定义域;(2)设,若函数在上有且仅有一个零点,求实数的取值范围;(3)设,是否存在正实数,使得函数在内的最大值为4?若存在,求出的值;若不存在,请说明理由.20已知向量为不共线向量,若向量与共线求k的值21已知函数的图象过点与点.(1)求,的值;(2)若,且,满足条件的的值.22已知函数.(1)求的定义域和的值;(2)当时,求,的值.参考答案一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、D【解析】当x0时,f(x)有一个零点,故当x0时只有一个实根,变量分离后进行计算可得答案.【详解

5、】当x0时,f(x)3x1有一个零点x.因此当x0时,f(x)exa0只有一个实根,aex(x0),函数y=ex单调递减,则1a0.故选:D【点睛】本题考查由函数零点个数确定参数的取值,考查指数函数的性质,属于基础题.2、C【解析】根据函数零点的存在性定理可得函数零点所在的区间【详解】解:函数,(1),根据函数零点的存在性定理可得函数零点所在的区间为,故选C【点睛】本题主要考查函数的零点的存在性定理的应用,属于基础题 3、C【解析】利用正弦定理求出角的正弦值,再求出角的度数.【详解】因为,所以,解得:,因为,所以.故选:C.4、B【解析】根据二次函数的单调性可得出关于的不等式,即可得解.【详解

6、】因为函数在区间上单调递增,则,解得.故选:B.5、C【解析】所求体积 ,故选C.6、C【解析】为幂函数,即解得:或当时,在上为减函数;当时,在上为常数函数(舍去),使幂函数为上的减函数的实数的值故选C.考点:幂函数的性质.7、C【解析】利用指数函数和对数函数的性质确定a,b,c的范围,由此比较它们的大小.【详解】 函数在上为减函数, ,即, 函数在上为减函数, ,即,函数在上为减函数,即 .故选:C.8、B【解析】根据给定条件换元,借助二次函数在闭区间上的最值即可作答.【详解】依题意,函数,令,则在上单调递增,即,于是有,当时,此时,当时,此时,所以函数的值域为.故选:B9、C【解析】由已知

7、可得,将代数式与相乘,展开后利用基本不等式可求得所求代数式的最小值.【详解】,由可得,所以,当且仅当时,等号成立.因此,的最小值为.故选:C.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.10、A【解析】先根据函数图象,求出和,进而求出,代入特殊点坐标,求出,得到正确答

8、案.【详解】由图象可知:,且,所以,不妨设:,将代入得:,即,解得:,当时,故A正确,其他选项均不合要求.故选:A11、B【解析】首先根据对数的运算法则,对式子进行相应的变形、整理,求得结果即可.【详解】,故选B.【点睛】该题考查的是有关对数的运算求值问题,涉及到的知识点有对数的运算法则,熟练掌握对数的运算法则是解题的关键.12、B【解析】设,直线的斜率为,直线的斜率为.有直线的斜率与直线的斜率的差是1,所以.通分得:,整理得:.故选B.点睛:求轨迹方程的常用方法:(1)直接法:直接利用条件建立x,y之间的关系F(x,y)0(2)待定系数法:已知所求曲线的类型,求曲线方程(3)定义法:先根据条

9、件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程(4)代入(相关点)法:动点P(x,y)依赖于另一动点Q(x0,y0)的变化而运动,常利用代入法求动点P(x,y)的轨迹方程二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.) 13、【解析】根据幂函数的定义,结合奇函数的定义进行求解即可.【详解】因为是幂函数,所以,或,当时,因为,所以函数是偶函数,不符合题意;当时,因为,所以函数是奇函数,符合题意,故答案为:14、【解析】由对数函数的性质可得点的坐标,由三角函数的定义求得与的值,再由正弦的二倍角公式即可求解.【详解】易知恒过点,即,因为点在角的终边上,所

10、以,所以,所以,故答案为:.15、【解析】设圆锥的底面半径为r,母线长为l,根据圆锥的侧面展开图是圆心角为的扇形,有,即,然后分别求得侧面积和底面积即可.【详解】设圆锥的底面半径为r,母线长为l,由题意得:,即,所以其侧面积是,底面积是,所以该圆锥的侧面积与底面积之比为故答案为:16、【解析】直接证出函数奇偶性,再利用奇偶性得解【详解】由题意得,所以,所以为奇函数,所以,所以【点睛】本题是函数中的给值求值问题,一般都是利用函数的周期性和奇偶性把未知的值转化到已知值上,若给点函数为非系非偶函数可试着构造一个新函数为奇偶函数从而求解三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说

11、明、证明过程或演算步骤。)17、(1)证明见解析;(2)【解析】(1)连接BE,证明AF平面BEC即可;(2)由等体积即可求点B到平面ACF的距离【小问1详解】连接BE,平面平面,且平面平面,又在矩形中,有,平面,平面,在正方形中有,且,平面平面,平面,;【小问2详解】设点到平面的距离为,由已知有,由(1)知:平面,平面,从而可得:,在等腰中,底边上的高为:,由得,则,即点到平面的距离为18、(1)(2)【解析】(1)由条件求得,将所求式展开计算(2)由条件求得与,再由二倍角与两角和的正切公式计算小问1详解】,则故【小问2详解】角终边上一点,则由(1)可得,19、(1);(2);(3)存在,.

12、【解析】(1)根据对数函数的定义域列不等式求解即可.(2)由函数的单调性和零点存在定理,列不等式求解即可.(3)由对勾函数的性质可得函数的单调区间,利用分类讨论的思想讨论定义域与单调区间的关系,再利用函数的最值存在性问题求出实数的值.【详解】(1)由题意,函数有意义,则满足,解得,即函数的定义域为.(2)由,且,可得,且为单调递增连续函数,又函数在上有且仅有一个零点,所以,即,解得,所以实数的取值范围是.(3)由,设,则,易证在为单调减函数,在为单调增函数,当时,函数在上为增函数,所以最大值为,解得,不符合题意,舍去;当时,函数在上为减函数,所以最大值为,解得,不符合题意,舍去;当时,函数在上

13、减函数,在上为增函数,所以最大值为或,解得,符合题意,综上可得,存在使得函数的最大值为4.【点睛】本题考查了对数函数的定义域问题、零点存在定理、对勾函数的应用,考查了理解辨析的能力、数学运算能力、分类讨论思想和转化的数学思想,属于一般题目.20、或【解析】由与共线存在实数使,再根据平面向量的基本定理构造一个关于的方程,解方程即可得到k的值.【详解】,或【点睛】本题主要考查的是平面向量的基本定理,与共线存在实数使是判定两个向量共线最常用的方法,是基础题.21、(1),;(2).【解析】(1)由给定条件列出关于,的方程组,解之即得;(2)由(1)的结论列出指数方程,借助换元法即可作答.【详解】(1)由题意可得,解得,(2)由(1)可得,而,且,于是有,设,从而得,解得,即,解得,所以满足条件的.22、(1)定义域为,;(2),.【解析】(1)由根式、分式的性质求函数定义域,将自变量代入求即可.(2)根据a的范围,结合(1)的定义域判断所求函数值是否有意义,再将自变量代入求值即可.【小问1详解】由,则定义域为,且.【小问2详解】由,结合(1)知:,有意义.所以,.

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服