收藏 分销(赏)

圆锥曲线最值问题.doc

上传人:天**** 文档编号:2573955 上传时间:2024-06-01 格式:DOC 页数:6 大小:460.04KB
下载 相关 举报
圆锥曲线最值问题.doc_第1页
第1页 / 共6页
圆锥曲线最值问题.doc_第2页
第2页 / 共6页
圆锥曲线最值问题.doc_第3页
第3页 / 共6页
圆锥曲线最值问题.doc_第4页
第4页 / 共6页
圆锥曲线最值问题.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、(完整word)圆锥曲线最值问题高考中圆锥曲线最值问题求解方法 圆锥曲线最值问题是高考中的一类常见问题,体现了圆锥曲线与三角、函数、不等式、方程、平面向量等代数知识之间的横向联系。解此类问题与解代数中的最值问题方法类似,.由于圆锥曲线的最值问题与曲线有关,所以利用曲线性质求解是其特有的方法。下面介绍几种常见求解方法。主要类型:(1)两条线段最值问题。(2)圆锥曲线上点到某条直线的距离的最值。(3)圆锥曲线上点到轴(轴)上某定点的距离的最值。(4)求几何图形面积的最值等.一、 定义法 根据圆锥曲线的定义,把所求的最值转化为平面上两点之间的距离、点线之间的距离等,这是求圆锥曲线最值问题的基本方法。

2、有些问题先利用圆锥曲线定义或性质给出关系式,再利用几何或代数法求最值,可使题目中数量关系更直观,解法更简捷。例1、已知抛物线 ,定点A(3,1),F 是抛物线的焦点 ,在抛物线上求一点 P,使|AP+PF|取最小值 ,并求的最小值 .分析:由点A引准线的垂线,垂足Q,则 |AP+|PF=|AP|+|PQ, 即为最小值。OF(1,0) xA(3,1)y Q P解: 如图,, 焦点F(1,0) . 由点A引准线x= 1的垂线 ,垂足Q,则 AP|+|PF=|AP|+PQ|, 即为最小值. . 由, 得 为所求点. 若另取一点 , 显然 。点悟 利用圆锥曲线性质求最值是一种特殊方法。在利用时技巧性较

3、强,但可以避繁就简,化难为易。又如已知圆锥曲线内一点A与其上一动点P,求 的最值时,常考虑圆锥曲线第二定义。例2、已知点F是双曲线 的左焦点,定点A(1,4),P是双曲线右支上动点,则 的最小值为_.解:例3、已知椭圆的右焦点F,且有定点,又点是椭圆上一动点。问是否有最值,若有,求出最值并指出点的坐标例4、已知点为抛物线上的点,那么点到点的距离与点到抛物线焦点的距离之和的最小值为 _ _,此时点坐标为 _.二、 参数法 利用椭圆、双曲线参数方程转化为三角函数问题,或利用直线、抛物线参数方程转化为函数问题求解。例1、椭圆的切线 与两坐标轴分别交于两点 , 求三角形的最小面积 。分析;写出椭圆参数

4、方程,设切点为,可得切线方程。 解: 设切点为 , 则切线方程为 。令y=0, 得切线与x轴交点;令,得切线与y轴交点= 点悟 利用圆锥曲线参数方程转化为求三角函数的最值问题,再利用三角函数的有界性得出结果。 三 、二次函数法 函数法就是把所求最值的目标表示为关于某个变量的函数,通过研究这个函数求最值,是求各类最值最为普遍的方法.(关键:建立函数关系式,注意变量的定义域).例1、过动直线与定直线的交点(其中)的等轴双曲线系中 , 当为何值时,达到最大值与最小值?分析:求出交点坐标代入双曲线,可得的二次函数表达式,再利用函数方法求解.解:由 , 得 交点,将交点坐标代入双曲线,= =。当 , ,

5、又 ,;当p=3a时, 点悟 把所求的最值表示为函数,再寻求函数在给定区间上的最值,但要注意函数的定义域。例2、点分别是椭圆的长轴的左右端点,F为右焦点,在椭圆上,位于轴的上方,且若为椭圆长轴上一点,到直线的距离等于.求椭圆上点到点的距离的最小值。分析:把所求距离表示为椭圆上点的横坐标的函数,然后求这个函数的最小值.解:由已知可得点、,设点,则由(1)(2)及得 的方程为设,则点到直线AP的距离设椭圆上点到距离为则四 、几何法 将圆锥曲线问题转化为平面几何问题,再利用平面几何知识,如对称点、三角形三边关系、平行间距离(切线法:当所求的最值是圆锥曲线上点到某条直线的距离的最值时,可以通过作与这条

6、直线平行的圆锥曲线的切线,则两平行线间的距离就是所求的最值,切点就是曲线上去的最值时的点。)等求解。例1、 已知椭圆 和直线 ,在l上取一点 ,经过点且以椭圆的焦点为焦点作椭圆 ,求在何处时所作椭圆的长轴最短,并求此椭圆方程 。分析;设是关于l对称点,可求出坐标,过的直线方程与联立得交点M为所求。y lP O xM解 :由椭圆方程 ,得, 设 是关于l对称点 , 可求出 坐标为(9,6) , 过的直线方程:x+2y-3=0与xy+9=0联立,得交点M(5,4), 即过M的椭圆长轴最短。由 ,得,, 所求椭圆方程为 。点悟 :在求圆锥曲线最值问题中,如果用代数方法求解比较复杂,可考虑用几何知识求

7、解,其中“三角形两边之和大于第三边”是求最值常用的定理.同时,利用平几知识求解,蕴涵了数形结合的思想. 五、不等式法 基本不等式法先将所求最值的量用变量表示出来,再利用均值不等式“等号成立”的条件求解.。这种方法是求圆锥曲线中最值问题应用最为广泛的一种方法。例5 、过椭圆的焦点的直线交椭圆A,B两点 ,求面积的最大值 。分析:由过椭圆焦点,写出直线AB方程为y=kx+1,与椭圆方程联立,消去y,得关于x的一元二次方程,巧妙的利用根与系数的关系,可以起到避繁就简的效果。 解 : 椭圆焦点 ,设过焦点,直线方程为 与联立 ,消去, 得 , 其中两根为横坐标 。 将三角形看作与组合而成 , 是公共边

8、 ,它们在公共边上的高长为 。, 其中 =. 当 即时,取等号 ,即当直线为 时 , 得到的面积最大值为 .例2、设椭圆中心在坐标原点是它的两个顶点,直线与椭圆交于两点,求四边形面积的最大值。解: 依题意设得椭圆标准方程为 直线AB、EF的方程分别为 设根据点到直线距离公式及上式,点E、F到AB的距离分别为四边形AFBE的面积为当且仅当点悟 利用均值不等式求最值,有时要用“配凑法”,这种方法是一种技巧。在利用均值不等式时,要注意满足三个条件:1、每一项要取正值;2、不等式的一边为常数;3、等号能够成立。其中正确应用 “等号成立的条件是这种方法关键. 圆锥曲线最值问题涉及知识较多,在求解时,要多思考、多联系,合理进行转化,以优化解题方法。6

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服