收藏 分销(赏)

圆锥曲线中距离的最值问题.doc

上传人:a199****6536 文档编号:2572791 上传时间:2024-06-01 格式:DOC 页数:8 大小:75.96KB
下载 相关 举报
圆锥曲线中距离的最值问题.doc_第1页
第1页 / 共8页
圆锥曲线中距离的最值问题.doc_第2页
第2页 / 共8页
圆锥曲线中距离的最值问题.doc_第3页
第3页 / 共8页
圆锥曲线中距离的最值问题.doc_第4页
第4页 / 共8页
圆锥曲线中距离的最值问题.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、圆锥曲线中距离的最值问题沙洋中学 张仙梅一 求圆锥曲线上一点到对称轴上一定点的距离的最值 例1:已知椭 圆+y2=1,点A( ,0),点P是椭圆上任意一点,求|PA|的最值。 变式1:已知椭 圆 ,点A(0 ,2),点P是椭圆上任意一点,求|PA|的最值。变式2:已知双曲线 ,点A(0 ,2),点P是双曲线上任意一点,求|PA|的最值。变式3: 已知抛物线,点A( ,0),点P是抛物线上任意一点,求|PA|的最值。 变式4:已知椭 圆+y2=1和圆各有一点A、B,求的最大值。 变式5:已知椭 圆+y2=1和圆各有一点A、B,求的最大值。二求圆锥曲线上一点P到定直线的距离的最值 例2:已知椭 圆

2、C: ,直线l:x+2y+18=0。(1)在椭圆上求一点P1,使点P1到直线l的距离最近,并求出最近距离。 (2)在椭圆上求一点P2,使点P2到直线l的距离最远,并求出最远距离。 变式1:已知椭 圆C: ,直线l:x-y-24=0。 (1)在椭圆上求一点P1,使点P1到直线l的距离最近,并求出最近距离。 (2)在椭圆上求一点P2,使点P2到直线l的距离最远,并求出最远距离。 变式2:已知抛物线C: ,直线l:。 在抛物线求一点P,使点P到直线l的距离最近,并求出最近距离。 三利用第一定义求最值例3:设F1、 F2分别是椭 圆C: 的左右焦点 ,P为椭圆上一点,M为圆(x-4)2+(y-3)2=

3、1上一点,则|PM|+|PF1|的最大值等于_,最小值等于_变式1:已知直线l经过抛物线C: 的焦点F,且与抛物线相交于A、B两点 。(1)若=4,求点A的坐标;(2)求线段AB的长的最小值。(3)过A、B两点分别作y轴的垂线,垂足分别为C、D,求的最小值。变式2:已知在直线l:上任取一点P,过点P以椭 圆C:的焦点为焦点作椭圆。(1)点P在何处时,所求椭圆的长轴最短?(2)求长轴最短时椭圆方程。四利用第二定义求最值已知定点P,焦点F,当与焦点F的相应准线和点P在圆锥曲线两侧时,在圆锥曲线上求一点M,使取最小值的问题,就要用第二定义求。例4:已知椭 圆C:内有一点P(1,-1),F为椭 圆的右焦点,在椭 圆上有一点M,使取得最小值,求点M的坐标及最小值。变式1:已知点P(1,-3),F为椭 圆的右焦点,在椭 圆上有一点Q,当取得最小值时,求点Q的坐标及最小值。变式2:如图所示,B地在A地的正东方向4km处,C地在B地的北偏东300方向2km处。河流的沿岸PQ(曲线)上任意一点到A的距离比到B的距离远2km,现要在曲线PQ上选一处M建一座码头,向B、C两地转运货物,经测算,从M到B、C修建公路的费用分别为a万元/km,2a万元/km,那么修建这条公路的总费用最低是 变式3:设F1、 F2分别是双曲线: 的左右焦点,点P在双曲线上,求的最值。 若是椭圆呢?

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服