ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:460.04KB ,
资源ID:2573955      下载积分:6 金币
验证码下载
登录下载
邮箱/手机:
验证码: 获取验证码
温馨提示:
支付成功后,系统会自动生成账号(用户名为邮箱或者手机号,密码是验证码),方便下次登录下载和查询订单;
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/2573955.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  
声明  |  会员权益     获赠5币     写作写作

1、填表:    下载求助     留言反馈    退款申请
2、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
3、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
4、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
5、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前自行私信或留言给上传者【天****】。
6、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
7、本文档遇到问题,请及时私信或留言给本站上传会员【天****】,需本站解决可联系【 微信客服】、【 QQ客服】,若有其他问题请点击或扫码反馈【 服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【 版权申诉】”(推荐),意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:4008-655-100;投诉/维权电话:4009-655-100。

注意事项

本文(圆锥曲线最值问题.doc)为本站上传会员【天****】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4008-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

圆锥曲线最值问题.doc

1、(完整word)圆锥曲线最值问题高考中圆锥曲线最值问题求解方法 圆锥曲线最值问题是高考中的一类常见问题,体现了圆锥曲线与三角、函数、不等式、方程、平面向量等代数知识之间的横向联系。解此类问题与解代数中的最值问题方法类似,.由于圆锥曲线的最值问题与曲线有关,所以利用曲线性质求解是其特有的方法。下面介绍几种常见求解方法。主要类型:(1)两条线段最值问题。(2)圆锥曲线上点到某条直线的距离的最值。(3)圆锥曲线上点到轴(轴)上某定点的距离的最值。(4)求几何图形面积的最值等.一、 定义法 根据圆锥曲线的定义,把所求的最值转化为平面上两点之间的距离、点线之间的距离等,这是求圆锥曲线最值问题的基本方法。

2、有些问题先利用圆锥曲线定义或性质给出关系式,再利用几何或代数法求最值,可使题目中数量关系更直观,解法更简捷。例1、已知抛物线 ,定点A(3,1),F 是抛物线的焦点 ,在抛物线上求一点 P,使|AP+PF|取最小值 ,并求的最小值 .分析:由点A引准线的垂线,垂足Q,则 |AP+|PF=|AP|+|PQ, 即为最小值。OF(1,0) xA(3,1)y Q P解: 如图,, 焦点F(1,0) . 由点A引准线x= 1的垂线 ,垂足Q,则 AP|+|PF=|AP|+PQ|, 即为最小值. . 由, 得 为所求点. 若另取一点 , 显然 。点悟 利用圆锥曲线性质求最值是一种特殊方法。在利用时技巧性较

3、强,但可以避繁就简,化难为易。又如已知圆锥曲线内一点A与其上一动点P,求 的最值时,常考虑圆锥曲线第二定义。例2、已知点F是双曲线 的左焦点,定点A(1,4),P是双曲线右支上动点,则 的最小值为_.解:例3、已知椭圆的右焦点F,且有定点,又点是椭圆上一动点。问是否有最值,若有,求出最值并指出点的坐标例4、已知点为抛物线上的点,那么点到点的距离与点到抛物线焦点的距离之和的最小值为 _ _,此时点坐标为 _.二、 参数法 利用椭圆、双曲线参数方程转化为三角函数问题,或利用直线、抛物线参数方程转化为函数问题求解。例1、椭圆的切线 与两坐标轴分别交于两点 , 求三角形的最小面积 。分析;写出椭圆参数

4、方程,设切点为,可得切线方程。 解: 设切点为 , 则切线方程为 。令y=0, 得切线与x轴交点;令,得切线与y轴交点= 点悟 利用圆锥曲线参数方程转化为求三角函数的最值问题,再利用三角函数的有界性得出结果。 三 、二次函数法 函数法就是把所求最值的目标表示为关于某个变量的函数,通过研究这个函数求最值,是求各类最值最为普遍的方法.(关键:建立函数关系式,注意变量的定义域).例1、过动直线与定直线的交点(其中)的等轴双曲线系中 , 当为何值时,达到最大值与最小值?分析:求出交点坐标代入双曲线,可得的二次函数表达式,再利用函数方法求解.解:由 , 得 交点,将交点坐标代入双曲线,= =。当 , ,

5、又 ,;当p=3a时, 点悟 把所求的最值表示为函数,再寻求函数在给定区间上的最值,但要注意函数的定义域。例2、点分别是椭圆的长轴的左右端点,F为右焦点,在椭圆上,位于轴的上方,且若为椭圆长轴上一点,到直线的距离等于.求椭圆上点到点的距离的最小值。分析:把所求距离表示为椭圆上点的横坐标的函数,然后求这个函数的最小值.解:由已知可得点、,设点,则由(1)(2)及得 的方程为设,则点到直线AP的距离设椭圆上点到距离为则四 、几何法 将圆锥曲线问题转化为平面几何问题,再利用平面几何知识,如对称点、三角形三边关系、平行间距离(切线法:当所求的最值是圆锥曲线上点到某条直线的距离的最值时,可以通过作与这条

6、直线平行的圆锥曲线的切线,则两平行线间的距离就是所求的最值,切点就是曲线上去的最值时的点。)等求解。例1、 已知椭圆 和直线 ,在l上取一点 ,经过点且以椭圆的焦点为焦点作椭圆 ,求在何处时所作椭圆的长轴最短,并求此椭圆方程 。分析;设是关于l对称点,可求出坐标,过的直线方程与联立得交点M为所求。y lP O xM解 :由椭圆方程 ,得, 设 是关于l对称点 , 可求出 坐标为(9,6) , 过的直线方程:x+2y-3=0与xy+9=0联立,得交点M(5,4), 即过M的椭圆长轴最短。由 ,得,, 所求椭圆方程为 。点悟 :在求圆锥曲线最值问题中,如果用代数方法求解比较复杂,可考虑用几何知识求

7、解,其中“三角形两边之和大于第三边”是求最值常用的定理.同时,利用平几知识求解,蕴涵了数形结合的思想. 五、不等式法 基本不等式法先将所求最值的量用变量表示出来,再利用均值不等式“等号成立”的条件求解.。这种方法是求圆锥曲线中最值问题应用最为广泛的一种方法。例5 、过椭圆的焦点的直线交椭圆A,B两点 ,求面积的最大值 。分析:由过椭圆焦点,写出直线AB方程为y=kx+1,与椭圆方程联立,消去y,得关于x的一元二次方程,巧妙的利用根与系数的关系,可以起到避繁就简的效果。 解 : 椭圆焦点 ,设过焦点,直线方程为 与联立 ,消去, 得 , 其中两根为横坐标 。 将三角形看作与组合而成 , 是公共边

8、 ,它们在公共边上的高长为 。, 其中 =. 当 即时,取等号 ,即当直线为 时 , 得到的面积最大值为 .例2、设椭圆中心在坐标原点是它的两个顶点,直线与椭圆交于两点,求四边形面积的最大值。解: 依题意设得椭圆标准方程为 直线AB、EF的方程分别为 设根据点到直线距离公式及上式,点E、F到AB的距离分别为四边形AFBE的面积为当且仅当点悟 利用均值不等式求最值,有时要用“配凑法”,这种方法是一种技巧。在利用均值不等式时,要注意满足三个条件:1、每一项要取正值;2、不等式的一边为常数;3、等号能够成立。其中正确应用 “等号成立的条件是这种方法关键. 圆锥曲线最值问题涉及知识较多,在求解时,要多思考、多联系,合理进行转化,以优化解题方法。6

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服