1、课程设计说明书工程结构仿真课程设计 学院(部): 专业班级: 学生姓名: 指导教师: 2015 年 01 月 11 日目 录1前言21.1有限元软件的功能和特点21.2课程设计的目的和要求22平面桁架问题分析32.1理论分析32.2有限元分析72.2.1有限元模型的建立72.2.2结果与分析82.3本章小结103实体模型分析113.1模型材料与几何参数113.2有限元模型的建立113.3结果与分析134心得体会155参考文献171前言有限元法(finite element method)是一种高效能、常用的数值计算方法。在科学计算领域中,常常需要求解各类微分方程,而许多微分方程的解析解一般很难
2、得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。有限元法在早期是以变分原理为基础发展起来的,所以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,如CREO, NASTRAN, ALOGOR, IDEAS, Auto CAD等, ANSYS软件借助有限元法求解出比较精确的解析解。1.1有限元软件的功能和特点有限元方法与其他求解边值问题近
3、似方法的根本区别在于它的近似性仅限于相对小的子域中。20世纪60年代初首次提出结构力学计算有限元概念的克拉夫(Clough)教授形象地将其描绘为:“有限元法=Rayleigh Ritz法+分片函数”,即有限元法是Rayleigh Ritz法的一种局部化情况。不同于求解(往往是困难的)满足整个定义域边界条件的允许函数的Rayleigh Ritz法,有限元法将函数定义在简单几何形状(如二维问题中的三角形或任意四边形)的单元域上(分片函数),且不考虑整个定义域的复杂边界条件,这是有限元法优于其他近似方法的原因之一。现代有限元软件与CAD软件的无缝集成,拥有更为强大的网格处理能力,而且由求解线性问题发
4、展到求解非线性问题并且由单一结构场求解发展到耦合场问题的求解,还有随着计算机技术的发展,程序面向用户的开放性加大。能够求解结构静力学问题、结构动力学问题、结构非线性问题和动力学分析等。1.2课程设计的目的和要求课程设计有两个问题,第一个是桁架的静力学分析,第二个是显示器支座的分析。要得出有限元方法的解,并和理论解对比分析,验证所得解的有效性。要求采用有限元软件ANSYS求解,学习了解有限元法的理论和掌握ANSYS的实际操作,并且判定结果的有效性。2平面桁架问题分析平面桁架在各种工程结构中,是一种广泛使用的特殊刚体系,是一些短而直的钢杆彼此以端部连接而成的几何不变的结构。当刚杆之间的连接能近似的
5、看为铰链约束,这种杆系结构称为桁架。其中(1)所有结点都是无摩擦的理想铰;(2)各杆的轴线都是直线并通过铰的中心;(3)荷载和支座反力都作用在结点上。桁架中所有杆件均为二力杆所组成的几何不变体,故计算方法有(1)结点法:截取桁架的一个结点为脱离体计算桁架内力的方法;(2)截面法:用适当的截面,截取桁架的一部分为脱离体,利用平面任意力系的平衡条件进行求解;(3)联合法:在解决一些复杂的桁架时,仅仅使用结点法或截面法往往不能解决结构的内力,这是需要将这两种方法进行联合。如图2-1所示桁架,求各个桁架的轴力,载荷和各杆长度在图中已经给出,杆的截面积为16cm2,泊松比v=0.25,弹性模量E=2.0
6、6Gpa。图2-1 桁架总图2.1理论分析(1)支座反力以整体为分析对象,先求支座反力。(2-1)(2)用截面法求解内力同时截断8、9、10三杆,如图2-2。图2-2 8、9、10杆截断面受力图(2-2)同时截断4、5、6三杆,如图2-3。图2-3 4、5、6杆截断面受力图(2-3)(3)用节点法求内力对于1节点,如图2-4。图2-4 节点1受力图(2-4)同理,对于右半跨:同时截断12、13、14三杆,如图2-5。图2-5 12、13、14杆截断面受力图(2-5)同时截断16、17、18三杆,如图2-6。图2-6 16、17、18杆截断面受力图(2-6)对于12节点,如图2-7。图2-7 节
7、点12受力图(2-7)对于3、7、11、15、19杆轴力,采用节点法易得:(2-8)则整理可以得出各杆轴力及支座反力,见表2-1。表2-1 各杆轴力及支座反力值F1=6.62KNF2=-7.49KNF3=0F4=6.62KNF5=-0.83KNF6=-6.17KNF7=0.37KNF8=5.88KNF9=-1.54KNF10=-4.71KNF11=0F12=3.50KNF13=1.54KNF14=-4.71KNF15=-0.36KNF16=2.79KNF17=0.79KNF18=-3.67KNF19=0F20=2.79KNF21=-3.16KNR1=4.52KNR12=1.48KN2.2有限元
8、分析2.2.1有限元模型的建立1.单元类型、几何特性及材料特性定义(1)定义单元类型点击主菜单中的PreferenceElement TypeAdd/Edit /Delete,弹出对话框,点击对话框中的Add按钮,又弹出一对话框,选中该对话框中的Link和3D finit stn 180选项,点击OK,关闭对话框。(2)定义几何特性定义实常数:点击主菜单中的PreprocessorReal ConstantsAdd/Edit/Delete, 弹出对话框,点击Add按钮,上步定义的LINK180单元出现于该对话框中,点击OK,弹出下一级对话框,在AREA一栏杆件的截面积1600,点击OK,点击C
9、lose,关闭所示对话框。(3)定义材料特性点击主菜单中的PreprocessorMaterial PropsMaterial Models, 弹出对话框,逐级双击右框中StructuralLinearElasticIsotropic前图标,弹出下一级对话框,在弹性模量文本框中输入:2.06E5,在泊松比文本框中输入:0.25,点击OK返回上一级对话框,并点击关闭按钮。2.衍架分析模型的建立(1)生成节点图2-1所示衍架中共有12个节点,其坐标根据已知条件容易求出如下:1(0,0,0),2(2850,0,0),3(2850,1515,0),4(5850, 0,0),5(5850,2480,0)
10、,6(8850,0,0),7(8850,2800,0),8(11850,0,0),9(11850,2480,0),10(14850, 0,0),11(14850,1515,0),12(17700,0,0)。点击主菜单中的PreprocessorModelingCreateNodesIn Active CS, 弹出对话框。在Node number一栏中输入节点号1,点击Apply按钮,同理将2-12点的坐标输入,以生成其余11个节点。此时,在显示窗口上显示所生成的12个节点的位置。(2)生成单元点击主菜单中PreprocessorModelingCreateElementsAuto Number
11、edThru Nodes,弹出节点选择对话框。依次点选节点1、2,点击Apply按钮,既可生成单元。同理,可生成其余20个单元。3.施加载荷(1)施加位移约束点击主菜单中的PreprocessorSolutionDefineLoadsApplyStructural DisplacementOn Nodes,弹出节点选择对话框,点击Apply按钮,弹出对话框,选择1结点,选择右上列表框中的All DOF,并点击Apply按钮。然后选择2结点,选择右上列表框中的UY,并点击OK按钮。(2)施加集中力载荷点击主菜单中的PreprocessorSolutionDefineLoadsApply Stru
12、cturalForce/MomentOn Nodes,弹出对话框,在Direction of force/mom一项中选择:FY,在Force/Moment value一项中输入-1000,然后点击OK按钮关闭对话框。同理在可施加其余三个力-2000、-2000、-1000。 4.开始求解点击主菜单中的PreprocessorSolutionSolveCurrent LS,点击OK按钮,开始进行分析求解。分析完成后,又弹出一信息窗口提示用户已完成求解,点击Close按钮关闭对话框即可。2.2.2结果与分析1显示变形图点击主菜单中的General PostprocPlot ResultsDefo
13、rmed Shape,弹出对话框。选中Def + undeformed选项,并点击OK按钮,即可显示桁架结构变形前后的结果,如图2-8所示。图2-8 模型变形图2.查看单元内力点击主菜单中的General PostrocList ResultsElement Solution,弹出 Structural Force对话框。导出数据处理后所得,见表2-2。表2-2 ANSYS结果与理论解比较轴力FxFyANSYS轴力解理论值F16616N06616N6.62KNF2-6616N3516.9N-7492.7N-7.49KNF30000F46616N06616N6.62KNF5-739.37N-37
14、3.38N-828.3N-0.83KNF6-5876.7N-1890.3N-6160.8N-6.17KNF70373.38N373.38N0.37KNF85876.7N05876.7N5.88KNF9-1189.2N983.05N-1542.9N-1.54KNF10-4687.5N-500N-4714.1N-4.7KNF1100.89338E-11N00F123498.3N03498.3N3.50KNF131189.2N983.05N1542.9N1.54KNF14-4687.5N500N-4714.1N-4.71KNF150-357.76N-357.76N-0.36KNF162789.9N0
15、2789.9N2.79KNF17708.43N357.76N793.64N0.79KNF18-3498.3N1125.3N-3674.8N-3.67KNF190000F202789.9N02789.9N2.79KNF21-2789.9N1483.1N-3159.6N-3.16KN查询支座反力为:(2-9)2.3本章小结通过一系列的理论运算以及软件的分析得到的两种结果的对比,理论答案和ANSYS模拟结果基本相同。ANSYS比手动计算简便许多,省去了在同一类问题中反复运算的麻烦,但ANSYS建模中的小误差会导致结果与理论结果不尽相同,位移函数的假设合理与否,将直接影响有限元法分析的计算精度、效率和
16、可靠性。所以各有利弊,理论知识复杂繁琐但是精确,软件分析简单明了但有时建模繁琐。但是,对于比较简单的桁架,使用ANSYS求解,就显得繁琐复杂,而且ANSYS对于初学者操作并不方便,所以对于简单桁架建议使用理论求解,对于复杂的桁架,就使用ANSYS求解。3实体模型分析3.1模型材料与几何参数随着电脑显示屏的更新换代,显示屏支座多种多样,因此在显示屏的支座设计上为工厂带来了不小的麻烦,为节约成本又要简约美观更要有足够的承担负荷的能力,从而设计一个好的支座成了一个新设计问题。网吧台式电脑显示器的支座简单普遍,其下部为一基座,上面立柱。为了模拟简单,对模型进行必要简化,使用长方体代替变截面长方体,材料
17、为复合材材,密度为1.5g/cm,泊松比为0.25,弹性模量为50GPa,电脑重量为60N,如图3-1。图3-1 电脑支座3.2有限元模型的建立1. 单元类型、几何特性及材料特性定义(1)定义单元类型点击主菜单中的Preference Element TypeAdd/Edit/Delete,弹出对话框,点击对话框中的Add按钮,又弹出一对话框,选中该对话框中的solid和20node 186选项,点击OK,关闭对话框。(2) 定义材料特性点击主菜单中的PreprocessorMaterial Props Material Models, 弹出对话框,逐级双击右框中StructuralLinea
18、rElasticIsotropic前图标,弹出下一级对话框,在弹性模量文本框中输入:5e4,在泊松比文本框中输入:0.25,在密度文本框中输入:1.5,点击OK 返回上一级对话框,并点击关闭按钮。2.支座模型的建立(1)生成基座在操作窗口依次点击Main Menu: Preprocessor Modeling Create AreasRectangle By Dimensions,依次输入四个模型坐标即X1-X2,Y1-Y2:(0,160),(0,80),点击“OK”即可。各角做半径为10的倒角,然后在Z方向拉伸厚度为10。(2)生成悬臂Main Menu: Preprocessor Mode
19、ling Modeling CreateAreas Rectangle By Dimensions。依次输入四个模型坐标即X1-X2,Y1-Y2:(50,110),(50,70),点击“OK”即可创建一个长为60,宽为20的矩形,然后拉在Z方向伸合50。并两个实体,即为支座模型。如图3-2。图3-2 ANSYS模型图3.网格划分在ANSYS软件操作界面上依次点击Main MemuPreprocessorMeshingMesh Tool,这时弹出Mesh Tool 对话框,点击Size Controls区域中的Volume的set按钮,然后点OK。按下Mesh按钮,这时弹出对话框,点击Pick
20、all按钮,为所有实体划分网格。4.施加约束位移PreprocessorLoadsDefine loadsApplyStructuralDisplacementOn Areas,弹出的对话框,点击底面,点击OK按钮,弹出对话框,选择右上表框中的ALL DOF,并点击OK,即可完成对底面的位移约束,相当于固定端。5.施加载荷点击主菜单的PreprocessorLoadsDefine loadsApplyStructuralForce/MomentOn nodes,选择受力面中点节点,在弹出的对话框中选择Z,大小为60。6.施加重力载荷点击主菜单的PreprocessorLoadsDefine l
21、oadsApplyStructuralInertiaGravity,在弹出的对话框的ACELY中输入:9.8,其他保留缺省设置,点击OK关闭对话框。7.求解点击主菜单的SolutionSolveCurrent LS,在弹出的对话框中点击OK按钮,开始进行分析求解。分析完成后,又弹出一信息窗口提示用户已经完成求解,点击CLOSE就关闭对话框即可。至于在求解时产生的STATUS Command窗口,点击FileClose关闭即可。3.3结果与分析 点击主菜单的PreprocessorGeneral PostprocPlot ResultsDeformed ShapeDef + undeformed
22、,点击OK关闭对话框,显示变形图。图3-3 模型整体变形图点击主菜单的PreprocessorGeneral PostprocPlot ResultsContourPlotNodal SoluDOF SolutionDisplacement vector sum,点击OK关闭对话框,显示位移云图。图3-4 位移云图点击主菜单的PreprocessorGeneral PostprocPlot ResultsContourPlotNodal SoluStressvon Mises stress,点击OK关闭对话框,显示等效应力云图。图3-5 等效应力云图4心得体会通过此次课程设计,使我更加扎实的掌
23、握了有关ANSYS方面的知识,在设计过程中虽然遇到了一些问题,但经过一次又一次的思考,一遍又一遍的检查终于找出了原因所在,也暴露出了前期我在这方面的知识欠缺和经验不足。实践出真知,通过亲自动手制作,使我们掌握的知识不再是纸上谈兵。在课程设计过程中,我们不断发现错误,不断改正,不断领悟,不断获取。这次课程设计终于顺利完成了,虽然在设计中遇到了很多问题,但是在自己不懈努力下,终于解决了所以问题。在以后学习实践过程中,一定要不懈努力,不能遇到问题就想到要退缩,一定要不厌其烦的发现问题所在,然后一一进行解决,只有这样,才能成功的做成想做的事,才能在今后的道路上披荆斩棘,而不是知难而退。 在课程设计中,
24、不仅培养了我独立思考、动手操作的能力,在其它各种能力上也都有了提高。更重要的是,在ANSYS操作上,我学会了更多有效的方法。而这对以后毕业设计真的是受益匪浅。以后,不管有多苦,我想我都能化苦为乐,发掘有趣的事情,发现其中珍贵的事情,踏实完成工作。回顾起此课程设计,我感慨颇多,从理论到实践,从思路到实施,在这段日子里,可以说得是苦多于甜,但是可以学到很多很多的东西,同时不仅可以巩固以前所学过的知识,而且学到很多在书本上所没有学到过的知识。通过这次课程设计使我懂得了理论与实际相结合是很重要的,只有理论知识是远远不够的,只有把所学的理论知识与实践相结合起来,从理论中得出结论,才能真正为社会服务,从而
25、提高自己的实际动手能力和独立思考的能力。在设计的过程中遇到问题,可以说得是困难重重,但可喜的是最终都得到了解决。桁架问题是结构力学最常规的问题,此次课程设计回顾前期学习的内容,并计算出理论解,考察了我的计算能力和基础是否扎实,然后又进行ANSYS仿真模拟,和理论解对比,结果几近相同。说明ANSYS的结果是非常可信的。 有限元法(finite element method)是一种高效能、常用的数值计算方法。在科学计算领域中,常常需要求解各类微分方程,而许多微分方程的解析解一般很难得到,使用有限元法将微分方程离散化后,可以编制程序,使用计算机辅助求解。有限元法在早期是以变分原理为基础发展起来的,所
26、以它广泛地应用于以拉普拉斯方程和泊松方程所描述的各类物理场中(这类场与泛函的极值问题有着紧密的联系)。ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。由世界上最大的有限元分析软件公司之一的美国ANSYS开发,它能与多数CAD软件接口,实现数据的共享和交换,如CREO, NASTRAN, ALOGOR, IDEAS, Auto CAD等, ANSYS软件借助有限元法求解出比较精确的解析解。ANSYS对于工科学生来说,是非常重要的,毕竟在以后的工作学习中会常常涉及。因此这次课程设计锻炼了我对于ANSYS的实际操作能力。对我而言,即是对ANSYS软件操作能力的检验,
27、也是对我能力的锻炼提升。此次设计也让我明白了思路即是出路,有什么不懂不明白的地方要及时请教或上网查询,只要认真钻研,动脑思考,动手实践,就没有弄不懂的知识。5参考文献1王新敏,李义强.ANSYS结构分析单元与应用M.北京:人民交通出版社,2001. 2胡于进,王璋奇.有限元分析及应用M.北京:清华大学出版社,2009. 3赵经文,王红钰.结构有限元分析(第2版)M.北京:科学出版社,2001.4包世华.结构力学M.北京:高等教育出版社,2002.5王瑁成.有限单元法M.北京:清华大学出版社,2002.目 录第一章 项目的意义和必要性11.1 项目名称及承办单位11.2 项目编制的依据11.3
28、肺宁系列产品的国内外现状21.4产业关联度分析31.5项目的市场分析4第二章 项目前期的技术基础82.1成果来源及知识产权情况,已完成的研发工作82.3产品临床试验的安全性和有效性8第三章 建设方案233.1建设规模233.2 建设内容233.3产品工艺技术233.5产品质量标准293.6 土建工程373.7 主要技术经济指标39第四章 建设内容、地点414.1 建设内容及建设规模414.2 建设地点414.3外部配套情况44第五章 环境保护、消防、节能465.1 环境保护465.2消防495.3节能50第六章 原材料供应及外部配套条件落实情况526.1主要原辅材料、燃料、动力消耗指标526.
29、2 公用工程54第七章 建设工期和进度安排567.1建设工期和进度安排567.2建设期管理56第八章 项目承担单位或项目法人所有制性质及概况578.1 项目承担单位概况578.2 企业财务经济状况588.3 项目负责人基本情况59第九章 投资估算与资金筹措629.1 项目计算期629.2 投资估算的编制依据及参数629.3 投资估算629.4 资金筹措649.5 贷款偿还64第十章 财务评价6510.1财务评价依据6510.2销售收入和销售税金及附加估算6510.3利润总额及分配6610.4盈利能力分析6610.5不确定分析6610.6财务评价结论68第十一章 项目风险分析,效益分析6911.1 风险分析6911.2 效益分析70