1、2011年中考模拟试卷数学卷考生须知:本试卷满分120分, 考试时间100分钟.答题前, 在答题纸上写姓名和准考证号.必须在答题纸的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明.考试结束后, 试题卷和答题纸一并上交.试 题 卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分) 下面每小题给出的四个选项中, 只有一个是正确的. 注意可用多种不同方法来选取正确答案.第1题1如图,数轴上点A所表示的数的倒数是()A. B. 2 C. D. 2化简(a0)的结果是()A. 0 B. C. D. 3下列判断正确的是()A. “打开电视机,正在播NBA篮球赛”是必然事件
2、B. “掷一枚硬币正面朝上的概率是”表示每抛掷硬币2次就必有1次反面朝上C. 一组数据2,3,4,5,5,6的众数和中位数都是5 D. 甲组数据的方差S甲2=0.24,乙组数据的方差S乙2=0.03,则乙组数据比甲组数据稳定4直角三角形两直角边和为7,面积为6,则斜边长为()A. 5 B. C. 7 D. 5下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.6已知中,y为负数,则m的取值范围是()A. m9 B. m9 C. m-9 D. m-97一个圆锥,它的左视图是一个正三角形,则这个圆锥的侧面展开图的圆心角度数是()A. 60 B. 90 C. 120 D. 18
3、08一种原价均为m元的商品,甲超市连续两次打八折;乙超市一次性打六折;丙超市第一次打七折,第二次再打九折;若顾客要购买这种商品,最划算应到的超市是()A. 甲或乙或丙 B. 乙 C. 丙 D. 乙或丙9如图,在菱形ABCD中,DEAB,BE=2,则tanDBE的值是()AGBHCFDE第10题 第9题A B2 C D10如图,在矩形ABCD中,BC=8,AB=6,经过点B和点D的两个动圆均与AC相切,且与AB、BC、AD、DC分别交于点G、H、E、F,则EF+GH的最小值是( )A6 B8 C9.6 D10二. 认真填一填 (本题有6个小题, 每小题4分, 共24分) 要注意认真看清题目的条件
4、和要填写的内容, 尽量完整地填写答案.11. 已知点A(1,2)在双曲线上则的值为 12. 如图,已知OB是O的半径,点C、D在O上,DCB40,则OBD 度. 13. “五一”假期,某公司组织全体员工分别到西湖、动漫节、宋城旅游,购买前往各地的车票种类、数量如图所示若公司决定采用随机抽取的方式把车票分配给员工,则员工小王抽到去动漫节车票的概率为 14. 如图是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知ABBD,CDBD,且测得AB=1.2米,BP=1.8米,PD=12米, 那么该古城墙的高度是 米.第12题
5、第13题西湖 动漫节 宋城 ABPDCC第14题图15. 如图,在半圆O中,直径AE=10,四边形ABCD是平行四边形,且顶点A、B、C在半圆上,点D在直径AE上,连接CE,若AD=8,则CE长为 第16题16. 如图,在第一象限内作射线OC,与x轴的夹角为30o,在射线OC上取一点A,过点A作AHx 轴于点H在抛物线y=x2(x0)上取点P,在y轴上取点Q,使得以P,O,Q为顶点的三角形与AOH全等,则符合条件的点A的坐标是 .ABCDEO第15题三. 全面答一答 (本题有8个小题, 共66分) 解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写
6、出一部分也可以.17. (本小题满分6分) 在下面三小题中任选其中两小题完成(1)已知,求代数式的值; (2)分解因式 (3)已知 ,求分式 的值18(本小题满分6分) 解不等式组:,并把解集在数轴上表示出来.ABCOED第19题19. (本小题满分6分) 如图, CD切O于点D,连结OC, 交O于点B,过点B作弦ABOD,点E为垂足,已知O的半径为10,sinCOD=.求:(1)弦AB的长; (2)CD的长;20. (本小题满分8分)已知正比例函数(a0)与反比例函数的图象有两个公共点,其中一个公共点的纵坐标为4(1)求这两个函数的解析式;(2)在坐标系中画出它们的图象(可不列表);(3)利
7、用图像直接写出当x取何值时,21. (本小题满分8分)学生小明、小华到某电脑销售公司参加社会实践活动,了解到2010年该公司经销的甲、己两种品牌电脑在第一季度三个月(即一、二、三月份)的销售数量情况小明用直方图表示甲品牌电脑在第一季度每个月的销售量的分布情况,见图;小华用扇形统计图表示乙品牌电脑每个月的销售量与该品牌电脑在第一季度的销售总量的比例分布情况,见图 根据上述信息,回答下列问题: (1)这三个月中,甲品牌电脑在哪个月的销售量最大? 月份; (2)已知该公司这三个月中销售乙品牌电脑的总数量比销售甲品牌电脑的总数量多50台,求乙品牌电脑在二月份共销售了多少台? (3)若乙品牌电脑一月份比
8、甲品牌电脑一月份多销售42台,那么三月份乙品牌电脑比甲品牌电脑多销售(少销售)多少台?22. (本小题满分10分)如图1,点P、Q分别是边长为4cm的等边ABC边AB、BC上的动点,点P从顶点A,点Q从顶点B同时出发,且它们的速度都为1cm/s, (1)连接AQ、CP交于点M,则在P、Q运动的过程中,CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;(2)何时PBQ是直角三角形? (3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则CMQ变化吗?若变化,则说明理由,若不变,则求出它的度数;APBQCM第22题图2APBQCM第22题图123.(本
9、小题满分10分)某商场将进价40元一个的某种商品按50元一个售出时,每月能卖出500个.商场想了两个方案来增加利润:方案一:提高价格,但这种商品每个售价涨价1元,销售量就减少10个;方案二:售价不变,但发资料做广告。已知这种商品每月的广告费用m(千元)与销售量倍数p关系为p = ;试通过计算,请你判断商场为赚得更大的利润应选择哪种方案?请说明你判断的理由!24. (本小题满分12分) ABCDGo第24题如图,在平面直角坐标系xoy中,矩形ABCD的边AB在x轴上,且AB=3,BC=,直线y=经过点C,交y轴于点G。(1)点C、D的坐标分别是C( ),D( );(2)求顶点在直线y=上且经过点
10、C、D的抛物线的解析式;(3)将(2)中的抛物线沿直线y=平移,平移后 的抛物线交y轴于点F,顶点为点E(顶点在y轴右侧)。平移后是否存在这样的抛物线,使EFG为等腰三角形?若存在,请求出此时抛物线的解析式;若不存在,请说明理由。2011年中考模拟试卷数学答题卷考生须知:本试卷满分120分, 考试时间100分钟.答题前, 在答题纸上写姓名和准考证号.必须在答题纸的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明.考试结束后, 试题卷和答题纸一并上交.试 题 卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分) 下面每小题给出的四个选项中, 只有一个是正确的. 注
11、意可用多种不同方法来选取正确答案.题号12345678910答案 二. 认真填一填 (本题有6个小题, 每小题4分, 共24分) 要注意认真看清题目的条件和要填写的内容, 尽量完整地填写答案. 11_ _; 12._ _; 13_ _; 14._; 15._ _; 16._ _ .三. 全面答一答 (本题有8个小题, 共66分) 解答应写出文字说明, 证明过程或推演步骤. 如果觉得有的题目有点困难, 那么把自己能写出的解答写出一部分也可以.17(本题6分)18(本题6分)ABCOED第19题19(本题6分)20(本题8分)21(本题8分)(1) (2)(3)22(本题10分)APBQCM第22
12、题图1(1) (2)APBQCM第22题图2 (3)23(本题10分) 24(本题12分)ABCDGo(1)C( ), D( );(2)(3) 2011年中考模拟试卷数学卷参考答案及评分标准考生须知:本试卷满分120分, 考试时间100分钟.答题前, 在答题纸上写姓名和准考证号.必须在答题纸的对应答题位置上答题,写在其他地方无效. 答题方式详见答题纸上的说明.考试结束后, 试题卷和答题纸一并上交.试 题 卷一. 仔细选一选 (本题有10个小题, 每小题3分, 共30分) 题号12345678910答案DBDACADB BC二. 认真填一填 (本题有6个小题, 每小题4分, 共24分)11. 1
13、 12. 50 13. 14. 8 15. 16. (,)(,)(3,)(2,2) (对一个得1分)三. 全面答一答 (本题有8个小题, 共66分) 17(本小题满分6分) (1) 1 1 1 1(2) 1 1 1(3),不妨设 218. (本小题满分6分) 1解:由(1)得: 1由(2)得: 2-120413不等式组的解为: 2在数轴上表示为:19. (本小题满分6分) 2(1) 1 (2)CD切O于D, ,不妨设,则 2 120. (本小题满分8分) 2(1) 交点纵坐标为4,解得(舍去) 2-24-42(2,-4)(-2,4)正比例函数:反比例函数:(2) 2 2(3)当时, 121.
14、(本小题满分8分) (1)二 1 3(2)二月份共销售乙品牌电脑: (台)(3)三月份乙品牌电脑比甲品牌电脑多销售: 3 (台)22. (本小题满分10分) 1 (1)不变。 1 又由条件得AP=BQ,(SAS) 1(2)设时间为t,则AB=BQ=t,PB=4-t 2 当 2当当第秒或第2秒时,PBQ为直角三角形 1(3)不变。 1 又由条件得BP=CQ,(SAS) 又 123. (本小题满分10分) 解:设涨价x元,利润为y元,则 4 方案一: 方案一的最大利润为9000元; 方案一: 4 方案二的最大利润为10125元; 2 选择方案二能获得更大的利润。24. (本小题满分12分) 2 (1) 2 (2)由二次函数对称性得顶点横坐标为,代入一次函数,得顶点坐标为(,), 设抛物线解析式为,把点代入得, 2 解析式为 (3)设顶点E在直线上运动的横坐标为m,则 2 可设解析式为 当FG=EG时,FG=EG=2m,代入解析式得:,得m=0(舍去), 2此时所求的解析式为:; 当GE=EF时,FG=4m,代入解析式得:,得m=0(舍去), 2此时所求的解析式为:;当FG=FE时,不存在;9 / 9