1、2022-2023学年九上数学期末模拟试卷注意事项1考生要认真填写考场号和座位序号。2试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。3考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1抛物线y3x2向右平移一个单位得到的抛物线是()Ay3x2+1By3x21Cy3(x+1)2Dy3(x1)22下列手机手势解锁图案中,是中心对称图形的是( )ABCD3下列说法正确的是( )经过三个点一定可以作圆;若等腰三角形的两边长分别为3和7,则第三边长是3或7;一个正六边形的内角和是其外角
2、和的2倍;随意翻到一本书的某页,页码是偶数是随机事件;关于x的一元二次方程x2-(k+3)x+k=0有两个不相等的实数根ABCD4的倒数是( )ABCD5定义新运算:对于两个不相等的实数,我们规定符号表示,中的较大值,如:因此,;按照这个规定,若,则的值是( )A1B1或CD1或6下列事件中,是必然事件的是( )A从装有10个黑球的不透明袋子中摸出一个球,恰好是红球B抛掷一枚普通正方体骰子,所得点数小于7C抛掷一枚一元硬币,正面朝上D从一副没有大小王的扑克牌中抽出一张,恰好是方块7在中,=90,则的值是( )ABCD8若两个相似三角形的相似比是1:2,则它们的面积比等于()A1:B1:2C1:
3、3D1:49如图,在ABC中,DEBC,DE4cm,则BC的长为()A8cmB12cmC11cmD10cm10如图,将ABC绕点A逆时针旋转100,得到ADE若点D在线段BC的延长线上,则B的大小为()A30B40C50D60二、填空题(每小题3分,共24分)11抛物线yx2+2x3的对称轴是_12如图,已知正六边形内接于,若正六边形的边长为2,则图中涂色部分的面积为_.13已知关于x的方程x23x2a10的一个根是0,则a_14若一个正六边形的周长为24,则该正六边形的面积为 15如图,中,点、分别是边、的中点,、分别交对角线于点、,则_.16如图,已知D是等边ABC边AB上的一点,现将AB
4、C折叠,使点C与D重合,折痕为EF,点E、F分别在AC和BC上如果AD:DB=1:2,则CE:CF的值为_17已知关于 x 的一元二次方程x2+2x-a=0的两个实根为x1,x2,且,则 a的值为 18如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形若等边三角形的边长为a,则勒洛三角形的周长为_三、解答题(共66分)19(10分)成都市某景区经营一种新上市的纪念品,进价为20元/件,试营销阶段发现;当销售单价是30元时,每天的销售量为200件;销售单价每上涨2元,每天的销售量就减少10件.这种纪念品的销售单价为x(元).(1
5、)试确定日销售量y(台)与销售单价为x(元)之间的函数关系式;(2)若要求每天的销售量不少于15件,且每件纪念品的利润至少为30元,则当销售单价定为多少时,该纪念品每天的销售利润最大,最大利润为多少?20(6分)如图,已知抛物线C1交直线y=3于点A(4,3),B(1,3),交y轴于点C(0,6)(1)求C1的解析式(2)求抛物线C1关于直线y=3的对称抛物线的解析式;设C2交x轴于点D和点E(点D在点E的左边),求点D和点E的坐标(3)将抛物线C1水平向右平移得到抛物线C3,记平移后点B的对应点B,若DB平分BDE,求抛物线C3的解析式(4)直接写出抛物线C1关于直线y=n(n 为常数)对称
6、的抛物线的解析式21(6分)在一个不透明的布袋中,有三个除颜色外其它均相同的小球,其中两个黑色,一个红色.(1)请用表格或树状图求出:一次随机取出2个小球,颜色不同的概率.(2)如果老师在布袋中加入若干个红色小球.然后小明通过做实验的方式猜测加入的小球数,小 明每次換出一个小球记录下慎色并放回,实验数据如下表:实验次数1002003004005001000摸出红球78147228304373752请你帮小明算出老师放入了多少个红色小球.22(8分)如图,是的直径,点在上,平分,是的切线,与相交于点,与相交于点,连接 (1)求证:;(2)若,求的长23(8分)如图,点E、F在BC上,BECF,A
7、BDC,BC求证:AD24(8分)如图,矩形中,点为边上一点,过点作的垂线交于点.(1)求证:;(2)若,求的长.25(10分)甲、乙、丙、丁共四支篮球队要进行单循环积分赛(每两个队间均要比赛一场),每天比赛一场,经抽签确定比赛场次顺序(1)甲抽到第一场出场比赛的概率为 ;(2)用列表法或树状图计算甲、乙两队抽得第一场进行比赛的概率26(10分)为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元,超市规定每盒售价不得少于45元根据以往销售经验发现:当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒(1)试求出每天的销售量y(盒
8、)与每盒售价(元)之间的函数关系式;(2)当每盒售价定为多少元时,每天销售的利润(元)最大?最大利润是多少?参考答案一、选择题(每小题3分,共30分)1、D【解析】先确定抛物线y3x1的顶点坐标为(0,0),再利用点平移的坐标变换规律得到点(0,0)平移后对应点的坐标为(1,0),然后根据顶点式写出平移后的抛物线的解析式【详解】y3x1的顶点坐标为(0,0),把点(0,0)右平移一个单位所得对应点的坐标为(1,0),所以平移后的抛物线解析式为y3(x1)1故选D【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出
9、原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式2、B【分析】根据中心对称图形的概念判断即可【详解】A不是中心对称图形;B是中心对称图形;C不是中心对称图形;D不是中心对称图形故选B【点睛】本题考查了中心对称图的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合3、D【分析】利用不在同一直线上的三个点确定一个圆,等腰三角形的性质及三角形三边关系、正多边形内角和公式和外角和、随机事件的定义及一元二次方程根的判别式分别判断后即可确定正确的选项【详解】解:经过不在同一直线上的三个点一定可以作圆,故说法错误;若等腰三角形的两边长分别为3和7
10、,则第三边长是7,故说法错误;一个正六边形的内角和是180(6-2)=720其外角和是360,所以一个正六边形的内角和是其外角和的2倍,故说法正确;随意翻到一本书的某页,页码可能是奇数,也可能是偶数,所以随意翻到一本书的某页,页码是偶数是随机事件,故说法正确;关于x的一元二次方程x2-(k+3)x+k=0,所以方程有两个不相等的实数根,故说法正确故选:D.【点睛】本题考查了不在同一直线上的三个点确定一个圆,等腰三角形的性质及三角形三边关系、正多边形内角和公式和外角和、随机事件的定义及一元二次方程根的判别式,熟练掌握相关知识点是本题的解题关键4、A【分析】根据乘积为1的两个数互为倒数进行解答即可
11、【详解】解:1=1,的倒数是1故选A【点睛】本题考查了倒数的概念,熟记倒数的概念是解答此题的关键5、B【分析】分x0和0x0时,有,解得, (舍去),x1时,n+(n-1)=2n-1,故新抛物线与y轴的交点为(0,2n-1),当n1时,n-(1-n)=2n-1,新抛物线与y轴的交点为(0,2n-1),k=2n-1,抛物线C1关于直线y=n(n 为常数)对称的抛物线的解析式为:y=x2x+2n1.【点睛】此题考查待定系数法求抛物线的解析式,抛物线的对称性,抛物线平移的性质,解题中确定变化后的抛物线的特殊点的坐标是解题的关键.21、(1)P=;(2)加入了5个红球【分析】(1)利用列表法表示出所有
12、可能,进而得出结论即可;(2)根据概率列出相应的方程,求解即可.【详解】(1)列表如图,黑1黑2红黑1/(黑1,黑2)(黑1,红)黑2(黑2,黑1)/(黑2,红)红(红,黑1)(红,黑2)/一共有6种等可能事件,其中颜色不同的等可能事件有4种,颜色不同的概率为P=(2)由图表可得摸到红球概率为设加入了x个红球=解得x=5经检验x=5是原方程的解答:加入了5个红球。【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率22、(1)见解析;(2)【分析】(1)利用圆周角定理得到ACB=90,再根
13、据切线的性质得ABD=90,则BAD+D=90,然后利用等量代换证明BED=D,从而判断BD=BE;(2)利用圆周角定理得到AFB=90,则根据等腰三角形的性质DF=EF =2,再证明,列比例式求出AD的长,然后计算AD-DE即可【详解】(1)证明:是的直径,是的切线,又平分,;(2)解:是的直径,又,在中,根据勾股定理得,即,解得,【点睛】本题考查了圆周角定理、等腰三角形的判定与性质和相似三角形的判定与性质、切线的性质.熟练掌握切线的性质和相似三角形的判定与性质是解答本题的关键23、答案见解析【分析】由BECF可得BFCE,再结合ABDC,BC可证得ABFDCE,问题得证.【详解】解BECF
14、,BE+EFCF+EF,即BFCE在ABF和DCE中, ABFDCE, AD【点睛】本题考查了全等三角形的判定和性质,是中考中比较常见的知识点,一般难度不大,需熟练掌握全等三角形的判定和性质.24、(1)证明见解析;(2)【分析】(1)根据同角的余角相等推出,结合即可判定相似;(2)根据条件可得CD=2,再利用相似三角形对应边成比例,建立方程即可求出DE.【详解】解:(1),又(2),【点睛】本题考查了相似三角形的判定与性质,熟练掌握“一线三垂直”模型的证明方法是解题的关键.25、 (1);(2) 【分析】(1)直接利用概率公式计算可得;(2)先画树状图列出所有等可能结果,再从中找到符合条件的
15、结果数,继而利用概率公式求解可得【详解】解答】解:(1)甲抽到第一场出场比赛的概率为,故答案为:;(2)画树状图得:共有12种等可能的结果,恰好选中甲、乙两队的有2种情况,甲、乙两队抽得第一场进行比赛的概率为【点睛】本题考查了用列表法或树状图计算概率的方法,概率=所求情况数与总情况数之比26、(1)y=-20x+1600;(2)当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元【解析】(1)根据“当售价定为每盒45元时,每天可卖出700盒,每盒售价每提高1元,每天要少卖出20盒”即可得出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;(2)根据利润=1盒粽子所获的利润销售量列出函数关系式整理,然后根据二次函数的最值问题解答即可试题分析:试题解析:(1)由题意得,y=700-20(x-45)=-20x+1600;(2),x45,抛物线的开口向下,当x=60时,P最大值=8000元,即当每盒售价定为60元时,每天销售的利润P(元)最大,最大利润是8000元考点:二次函数的应用