1、2022-2023学年九上数学期末模拟试卷考生请注意:1答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1下列说法正确的是( )A对角线相等的四边形一定是矩形B任意掷一枚质地均匀的硬币10次,一定有5次正面向上C如果有一组数据为5,3,6,4,2,那么它的中位数是6D“用长分别为、12cm、的三条线段可以围成三角形”这一事件是不可能事件2若整数使关
2、于的不等式组至少有4个整数解,且使关于的分式方程有整数解,那么所有满足条件的的和是( )ABCD3在下列四个图案中,既是轴对称图形,又是中心对称图形的是( )ABCD4下列事件中是必然事件是( )A明天太阳从西边升起B篮球队员在罚球线投篮一次,未投中C实心铁球投入水中会沉入水底D抛出一枚硬币,落地后正面向上5如图,点C是线段AB的黄金分割点(ACBC),下列结论错误的是( )ABCD6二次函数图象的顶点坐标是( )ABCD7如图,从一块直径为的圆形铁皮上剪出一个圆心角为90的扇形.则此扇形的面积为( )ABCD8如图,一个正六边形转盘被分成6个全等三角形,任意转动这个转盘1次,当转盘停止时,指
3、针指向阴影区域的概率是( )ABCD9如图,反比例函数y(x0)的图象经过RtBOC斜边上的中点A,与边BC交于点D,连接AD,则ADB的面积为()A12B16C20D2410对于二次函数y2(x+1)(x3),下列说法正确的是()A图象过点(0,3)B图象与x轴的交点为(1,0),(3,0)C此函数有最小值为6D当x1时,y随x的增大而减小二、填空题(每小题3分,共24分)11已知某小区的房价在两年内从每平方米8100元增加到每平方米12500元,设该小区房价平均每年增长的百分率为,根据题意可列方程为_.12小芳参加图书馆标志设计大赛,他在边长为2的正方形ABCD内作等边BCE,并与正方形的
4、对角线交于F、G点,制成了图中阴影部分的标志,则这个标志AFEGD的面积是_13在等腰ABC中,ABAC4,BC6,那么cosB的值_14如图,是某公园一圆形喷水池,在池中心竖直安装一根水管OA1.25m,A处是喷头,水流在各个方向沿形状相同的抛物线落下,水落地后形成一个圆,圆心为O,直径为线段CB建立如图所示的平面直角坐标系,若水流路线达到最高处时,到x轴的距离为2.25m,到y轴的距离为1m,则水落地后形成的圆的直径CB_m15一元二次方程的两根之积是_16在ABC中,tanB,BC边上的高AD6,AC3,则BC长为_17一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球每
5、次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在,那么估计盒子中小球的个数是_18如图,半径为的O与边长为8的等边三角形ABC的两边AB、BC都相切,连接OC,则sinOCB_三、解答题(共66分)19(10分)如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45,底部点C的俯角为30,求楼房CD的高度(17)20(6分)我市要选拔一名教师参加省级评优课比赛:经笔试、面试,结果小潘和小丁并列第一,评委会决定通过摸球来确定人选规则如下:在不透明的布袋里装有除颜色之外均相同的2个红球和1个蓝球,小潘先取出一个球,记住颜色后放
6、回,然后小丁再取出一个球若两次取出的球都是红球,则小潘胜出;若两次取出的球是一红一蓝,则小丁胜出你认为这个规则对双方公平吗?请用列表法或画树状图的方法进行分析21(6分)山西是我国酿酒最早的地区之一,山西酿酒业迄今为止已有余年的历史.在漫长的历史进程中,山西人民酿造出品种繁多、驰名中外的美酒佳酿,其中以汾酒、竹叶青酒最为有名.某烟酒超市卖有竹叶青酒,每瓶成本价是元,经调查发现,当售价为元时,每天可以售出瓶,售价每降低元,可多售出瓶(售价不高于元)(1)售价为多少时可以使每天的利润最大?最大利润是多少?(2)要使每天的利润不低于元,每瓶竹叶青酒的售价应该控制在什么范围内?22(8分)为做好全国文
7、明城市的创建工作,我市交警连续天对某路口个“岁以下行人”和个“岁及以上行人”中出现交通违章的情况进行了调查统计,将所得数据绘制成如下统计图请根据所给信息,解答下列问题(1)求这天“岁及以上行人”中每天违章人数的众数(2)某天中午下班时段经过这一路口的“岁以下行人”为人,请估计大约有多少人会出现交通违章行为(3)请根据以上交通违章行为的调查统计,就文明城市创建减少交通违章提出合理建议23(8分)(1)已知如图1,在中,点在内部,点在外部,满足,且求证:(2)已知如图2,在等边内有一点,满足,求的度数 24(8分)已知抛物线yx22ax+m(1)当a2,m5时,求抛物线的最值;(2)当a2时,若该
8、抛物线与坐标轴有两个交点,把它沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,请判断k的取值情况,并说明理由;(3)当m0时,平行于y轴的直线l分别与直线yx(a1)和该抛物线交于P,Q两点若平移直线l,可以使点P,Q都在x轴的下方,求a的取值范围25(10分)如图,已知一次函数与反比例函数的图像相交于点,与轴相交于点(1)求的值和的值以及点的坐标;(2)观察反比例函数的图像,当时,请直接写出自变量的取值范围;(3)以为边作菱形,使点在轴正半轴上,点在第一象限,求点的坐标;(4)在y轴上是否存在点,使的值最小?若存在,请求出点的坐标;若不存在,请说明理由26(10分)如图,RtAB
9、C中,ABC=90,以AB为直径作O,点D为O上一点,且CD=CB、连接DO并延长交CB的延长线于点E(1)判断直线CD与O的位置关系,并说明理由;(2)若BE=4,DE=8,求AC的长参考答案一、选择题(每小题3分,共30分)1、D【分析】根据矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义依次判断即可.【详解】A.对角线相等的平行四边形是矩形,故该项错误;B. 任意掷一枚质地均匀的硬币10次,不一定有5次正面向上,故该项错误;C. 一组数据为5,3,6,4,2,它的中位数是4,故该项错误;D. “用长分别为、12cm、的三条线段可以围成三角形” 这一事件是不可能事
10、件,正确,故选:D.【点睛】此题矩形的判定定理,数据出现的可能性的大小,中位数的计算方法,不可能事件的定义,综合掌握各知识点是解题的关键.2、A【分析】根据不等式组求出a的范围,然后再根据分式方程求出a的取值范围,综合考虑确定a的值,再求和即可.【详解】解不等式组得:至少有4个整数解,解得分式方程去分母得解得:分式方程有整数解,a为整数、, 又或满足条件的的和是-13,故选A.【点睛】本题考查了不等式组与分式方程,解题的关键是解分式方程时需要舍去增根的情况.3、C【分析】根据轴对称图形与中心对称图形的概念求解【详解】解:A此图案既不是轴对称图形,也不是中心对称图形;B此图案既不是轴对称图形,也
11、不是中心对称图形;C此图案既是轴对称图形,又是中心对称图形;D此图案仅是轴对称图形;故选:C【点睛】本题考查了中心对称图形与轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形的关键是要寻找对称中心,旋转180度后两部分重合4、C【解析】必然事件就是一定会发生的事件,即发生的概率是1的事件,依据定义即可解决【详解】解:A、明天太阳从西边升起,是不可能事件,故不符合题意;B、篮球队员在罚球线投篮一次,未投中,是随机事件,故不符合题意;C、实心铁球投入水中会沉入水底,是必然事件,故符合题意; D、抛出一枚硬币,落地后正面向上,是随机事件,故不符合题意故选C5、B【解
12、析】ACBC,AC是较长的线段,根据黄金分割的定义可知:= 0.618,故A、C、D正确,不符合题意;AC2=ABBC,故B错误,符合题意;故选B6、A【分析】根据二次函数顶点式即可得出顶点坐标.【详解】,二次函数图像顶点坐标为:.故答案为A.【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x-h)2+k中,对称轴为x=h,顶点坐标为(h,k)7、A【解析】分析:连接AC,根据圆周角定理得出AC为圆的直径,解直角三角形求出AB,根据扇形面积公式求出即可详解:连接AC从一块直径为2m的圆形铁皮上剪出一个同心角为90的扇形,即ABC=90,AC为直径,即AC=2m
13、,AB=BC AB2+BC2=22,AB=BC=m,阴影部分的面积是=(m2) 故选A点睛:本题考查了圆周角定理和扇形的面积计算,能熟记扇形的面积公式是解答此题的关键8、C【解析】试题分析:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是=;故选C考点:几何概率9、A【解析】过A作AEOC于E,设A(a,b),求得B(2a,2b),ab16,得到SBCO2ab32,于是得到结论【详解】过A作AEOC于E,设A(a,b),当A是OB的中点,B(2a,2b),反比例函数y(x0)的图象经过RtBOC斜边上的中点A,ab16,SBCO2ab32,点D在反比例函数数y(
14、x0)的图象上,SOCD162=8,SBOD32824,ADB的面积SBOD12,故选:A【点睛】本题主要考查反比例函数的图象与三角形的综合,掌握反比例函数的比例系数k的几何意义,添加合适的辅助线,是解题的关键.10、D【分析】通过计算自变量x对应的函数值可对A进行判断;利用抛物线与x轴的交点问题,通过解方程2(x+1)(x3)0可对B进行判断;把抛物线的解析式配成顶点式,然后根据二次函数的性质对C、D进行判断【详解】解:A、当x0时,y2(x+1)(x3)6,则函数图象经过点(0,6),所以A选项错误;B、当y0时,2(x+1)(x3)0,解得x11,x23,则抛物线与x轴的交点为(1,0)
15、,(3,0),所以B选项错误;C、y2(x+1)(x3)2(x1)28,则函数有最小值为8,所以D选项错误;D、抛物线的对称轴为直线x1,开口向上,则当x1时,y随x的增大而减小,所以D选项正确故选:D【点睛】本题考查了二次函数的图像和性质,函数的最值,增减性,与坐标轴交点坐标熟练掌握是解题的关键二、填空题(每小题3分,共24分)11、【分析】根据相等关系:8100(1+平均每年增长的百分率)2=12500即可列出方程.【详解】解:根据题意,得:.故答案为:.【点睛】本题考查的是一元二次方程的应用之增长降低率问题,一般的,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数
16、量关系为:.12、6-3【解析】首先过点G作GNCD于N,过点F作FMAB于M,由在边长为2的正方形ABCD内作等边BCE,即可求得BEC与正方形ABCD的面积,由直角三角形的性质,即可求得GN的长,即可求得CDG的面积,同理即可求得ABF的面积,又由S阴影=S正方形ABCD-SABF-SBCE-SCDG,即可求得阴影图形的面积【详解】解:过点G作GNCD于N,过点F作FMAB于M,在边长为2的正方形ABCD内作等边BCE,ABBCCDADBEEC2,ECB60,ODC45,SBEC2,S正方形AB24,设GNx,NDGNGD45,NCG30,DNNGx,CNNGx,x+x2,解得:x1,SC
17、GDCDGN2(1)1,同理:SABF1,S阴影S正方形ABCDSABFSBCESCDG4(1)(1)63故答案为:63【点睛】此题考查了正方形,等边三角形,以及直角三角形的性质等知识此题综合性较强,难度适中,解题的关键是注意方程思想与数形结合思想的应用13、【解析】作ADBC于D点,根据等腰三角形的性质得到BDBC3,然后根据余弦的定义求解【详解】解:如图,作ADBC于D点,ABAC4,BC6,BDBC3,在RtABD中,cosB故答案为【点睛】本题考查了锐角三角函数的定义:在直角三角形中,一锐角的余弦值等于这个角的邻边与斜边的比也考查了等腰三角形的性质14、1【分析】设y轴右侧的抛物线解析
18、式为:ya(x1)22.21,将A(0,1.21)代入,求得a,从而可得抛物线的解析式,再令函数值为0,解方程可得点B坐标,从而可得CB的长【详解】解:设y轴右侧的抛物线解析式为:ya(x1)2+2.21点A(0,1.21)在抛物线上1.21a(01)2+2.21解得:a1抛物线的解析式为:y(x1)2+2.21令y0得:0(x1)2+2.21解得:x2.1或x0.1(舍去)点B坐标为(2.1,0)OBOC2.1CB1故答案为:1【点睛】本题考查了二次函数在实际问题中的应用,明确二次函数的相关性质及正确的解方程,是解题的关键15、【分析】根据一元二次方程两根之积与系数的关系可知【详解】解:根据
19、题意有两根之积x1x2=-1故一元二次方程-x2+3x+1=0的两根之积是-1故答案为:-1【点睛】本题重点考查了一元二次方程根与系数的关系,是基本题型两根之积x1x2=16、5或1【分析】分两种情况:AC与AB在AD同侧,AC与AB在AD的两侧,在RtABD中,通过解直角三角形求得BD,用勾股定理求得CD,再由线段和差求BC便可【详解】解:情况一:当AC与AB在AD同侧时,如图1,AD是BC边上的高,AD6,tanB,AC3在RtABD中,在RtACD中,利用勾股定理得BC=BD-CD=8-3=5;情况二:当AC与AB在AD的两侧,如图2,AD是BC边上的高,AD6,tanB,AC3在RtA
20、BD中,在RtACD中,利用勾股定理得BC=BD+CD=8+3=1;综上,BC=5或1故答案为:5或1【点睛】本题主要考查了解直角三角形的应用题,关键是分情况讨论,比较基础,容易出错的地方是漏解17、1【解析】根据利用频率估计概率得到摸到黄球的概率为1%,然后根据概率公式计算n的值【详解】解:根据题意得1%,解得n1,所以这个不透明的盒子里大约有1个除颜色外其他完全相同的小球故答案为1【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率当实验的
21、所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率18、【分析】根据切线长定理得出,解直角三角形求得,即可求得,然后解RtOCD即可求得的值【详解】解:连接,作于,与等边三角形的两边、都相切,在RtOCD中,故答案为:【点睛】本题考查了切线的性质,等边三角形的性质,解直角三角形等,作出辅助线构建直角三角形是解题的关键三、解答题(共66分)19、32.2m【详解】试题分析:首先分析图形,根据题意构造直角三角形本题涉及多个直角三角形,应利用其公共边构造关系式求解试题解析:如图,过点B作BECD于点E,根据题意,DBE=25,CBE=30ABAC,C
22、DAC,四边形ABEC为矩形,CE=AB=12m,在RtCBE中,cotCBE=,BE=CEcot30=12=12,在RtBDE中,由DBE=25,得DE=BE=12CD=CE+DE=12(+1)32.2答:楼房CD的高度约为32.2m考点:解直角三角形的应用仰角俯角问题20、这个规则对双方是公平的【分析】根据树状图列出共有9种可能,两次都是红球和一红一蓝的概率是否相同,相同即公平,不同即不公平,即可判断出.【详解】解:树状图或列表对由此可知,共有9种等可能的结果,其中两红球及一红一蓝各有4种结果P(都是红球)= ,P(1红1蓝)= P(都是红球)=P(1红1蓝)这个规则对双方是公平的【点睛】
23、此题主要考查了用树状图求概率的方法,将实际生活中转化为数学模式是解题的关键.21、(1)每瓶竹叶青酒售价为元时,利润最大,最大利润为元;(2)要使每天利润不低于元,每瓶竹叶青酒售价应控制在元到元之间.【分析】(1)设每瓶竹叶青酒售价为元,每天的销售利润为元,根据“当售价为元时,每天可以售出瓶,售价每降低元,可多售出瓶”即可列出二次函数,再整理成顶点式即可得出;(2)由题意得,再根据二次函数的性质即可得出.【详解】解:(1)设每瓶竹叶青酒售价为元,每天的销售利润为元.则:,整理得:.,当时,取得最大值.每瓶竹叶青酒售价为元时,利润最大,最大利润为元.(2)每天的利润为元时,.解得:,.,由二次函
24、数图象的性质可知,时,.要使每天利润不低于元,每瓶竹叶青酒售价应控制在元到元之间.【点睛】本题考查了二次函数的应用,根据题意找到关系式是解题的关键.22、(1);(2)人;(3)应加大对老年人的交通安全教育(答案不唯一)【分析】(1)根据众数的概念求解可得;(2)利用样本估计总体思想求解可得;(3)根据折线图中的数据提出合理的建议均可,答案不唯一【详解】(1)这天“岁及岁以上行人”中每天违章人数有三天是8人,出现次数最多,这天“岁及岁以上行人”中每天违章人数的众数为:;(2 )估计出现交通违章行为的人数大约为:;(3)由折线统计图知,“岁及岁以上行人”违章次数明显多于“岁以下行人”,所以应加大
25、对老年人的交通安全教育.(答案不唯一)【点睛】本题考查的是折线统计图的运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键23、(1)详见解析;(2)150【分析】(1)先证ABD =CBE,根据SAS可证ABDCBE;(2)把线段PC以点C为中心顺时针旋转60到线段CQ处,连结AQ根据旋转性质得PCQ是等边三角形,根据等边三角形性质证BCPACQ(SAS),得BP=AQ=4,BPC=AQC,根据勾股定理逆定理可得AQP=90,进一步推出BPC=AQC=AQP+PQC=90+60.【详解】(1)证明:ABC=90,BDBEABC=DBE=90即ABD+DBC=DBC+CBEABD
26、=CBE又AB=CB,BD=BEABDCBE(SAS) (2)如图,把线段PC以点C为中心顺时针旋转60到线段CQ处,连结AQ由旋转知识可得:PCQ =60,CP=CQ=1,PCQ是等边三角形,CP=CQ=PQ=1又ABC是等边三角形, ACB=60=PCQ,BC=AC, BCP+PCA=PCA+ACQ,即BCP=ACQ在BCP与ACQ中 BCPACQ (SAS)BP=AQ=4,BPC=AQC又PA=5,AQP=90又PCQ是等边三角形,PQC=60BPC=AQC=AQP+PQC=90+60=150BPC=150【点睛】考核知识点:等边三角形,全等三角形,旋转,勾股定理.根据旋转性质和全等三角
27、形判定和性质求出边和角的关系是关键.24、(3)-3;(2)k2,见解析;(3)a3或a3【分析】(3)把a2,m5代入抛物线解析式即可求抛物线的最值;(2)把a2代入,当该抛物线与坐标轴有两个交点,分抛物线与x轴、y轴分别有一个交点和抛物线与x轴、y轴交于原点,分别求出m的值,把它沿y轴向上平移k个单位长度,得到新的抛物线与x轴没有交点,列出不等式,即可判断k的取值;(3)根据题意,分a大于2和a小于2两种情况讨论即可得a的取值范围【详解】解:(3)当a2,m5时,yx24x5(x2)23所以抛物线的最小值为3(2)当a2时,yx24x+m因为该抛物线与坐标轴有两个交点,该抛物线与x轴、y轴
28、分别有一个交点=36-4m=2,m=4,yx24x+4=(x-2)2沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,则k2;该抛物线与x轴、y轴交于原点,即m=2,yx24x把它沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点,yx24x+k此时2,即364k2解得k4;综上,k2时,函数沿y轴向上平移k个单位长度后,得到新的抛物线与x轴没有交点; (3)当m2时,yx22ax抛物线开口向上,与x轴交点坐标为(2,2)(2a,2),a2直线l分别与直线yx(a3)和该抛物线交于P,Q两点,平移直线l,可以使点P,Q都在x轴的下方,当a2时,如图3所示,此时,当x2时,2a
29、+32,解得a3;当a2时,如图2所示,此时,当x2a时,2aa+32,解得a3综上:a3或a3【点睛】本题主要考查的是二次函数的综合应用,掌握二次函数的最值问题和根据题意进行分类讨论是解本题的关键.25、(1)n=3,k=1,点B的坐标为(2,3);(2)x2或x3;(3)点D的坐标为(2+,3);(2)存在,P(3,1)【分析】(1)把点A(2,n)代入一次函数中可求得n的值,从而求出一次函数的解析式,于是可得B的坐标;再把点A的坐标代入反比例函数中,可得到k的值;(2)观察反比例函数图象即可得到当y-3时,自变量x的取值范围(3)先求出菱形的边长,然后利用平移的性质可得点D的坐标;(2)
30、作点B关于y轴的对称点Q,连接AQ交y轴于点P,此时的值最小,据此可解.【详解】解:(1)把点A(2,n)代入一次函数y=x3,可得n=23=3;把点A(2,3)代入反比例函数,可得3=,解得:k=1一次函数y=x3与x轴相交于点B,x3=3,解得:x=2,点B的坐标为(2,3),(2)当y=3时,解得:x=2故当y3时,自变量x的取值范围是x2或x3(3)如图1,过点A作AEx轴,垂足为E, A(2,3),B(2,3),OE=2,AE=3,OB=2,BE=OEOB=22=2,在RtABE中,AB=四边形ABCD是菱形,AD =AB=,ADBC,点A(2,3)向右平移个单位到点D,点D的坐标为
31、(2+,3)(2)存在.如图2,作点B关于y轴的对称点Q,连接AQ交y轴于点P,此时的值最小.设直线AQ的解析式为y=kx+b,点B(2,3)关于y轴的对称点Q的坐标为(-2,3),,,直线AQ的关系式为,直线AQ与y轴的交点为P(3,1)在y 轴上存在点P(3,1),使的值最小.【点睛】本题属于反比例函数综合题,考查了待定系数法求函数解析式,菱形的性质、反比例函数的性质等知识,熟练掌握相关性质及数形结合思想是解题关键26、(1)相切,证明见解析;(2)6.【分析】(1)欲证明CD是切线,只要证明ODCD,利用全等三角形的性质即可证明;(2)设O的半径为r在RtOBE中,根据OE2=EB2+OB2,可得(8r)2=r2+42,推出r=3,由tanE=,推出,可得CD=BC=6,再利用勾股定理即可解决问题【详解】解:(1)相切,理由如下,如图,连接OC,CB=CD,CO=CO,OB=OD,OCBOCD,ODC=OBC=90,ODDC,DC是O的切线;(2)设O的半径为r,在RtOBE中,OE2=EB2+OB2,(8r)2=r2+42,r=3,AB=2r=6,tanE=,CD=BC=6,在RtABC中,AC=【点睛】本题考查直线与圆的位置关系、圆周角定理、勾股定理、锐角三角函数等知识,正确添加辅助线,熟练掌握和灵活应用相关知识解决问题是关键