收藏 分销(赏)

高一数学第一章集合概念.doc

上传人:快乐****生活 文档编号:2261736 上传时间:2024-05-24 格式:DOC 页数:4 大小:85.01KB 下载积分:5 金币
下载 相关 举报
高一数学第一章集合概念.doc_第1页
第1页 / 共4页
高一数学第一章集合概念.doc_第2页
第2页 / 共4页


点击查看更多>>
资源描述
高中教案 孙贤 课 题:1.1集合 教学目的:(1)使学生初步理解集合的概念,知道常用数集的概念及记法(2)使学生初步了解“属于”关系的意义(3)使学生初步了解有限集、无限集、空集的意义 教学重点:集合的基本概念及表示方法 教学难点:运用集合的两种常用表示方法——列举法与描述法,正确表示一些简单的集合 授课类型:新授课 课时安排:1课时 教学过程: 一、复习引入: 1.简介数集的发展;2.教材中的章头引言;3.集合论的创始人——康托尔(德国数学家);4.“物以类聚”,“人以群分”;5.教材中例子。 二、讲解新课: 阅读教材第一部分,问题如下: (1)有那些概念?是如何定义的?(2)有那些符号?是如何表示的? (3)集合中元素的特性是什么? (一)集合的有关概念: 由一些数、一些点、一些图形、一些整式、一些物体、一些人组成的,我们说,每一组对象的全体形成一个集合,或者说,某些指定的对象集在一起就成为一个集合,也简称集。集合中的每个对象叫做这个集合的元素。 定义:一般地,某些指定的对象集在一起就成为一个集合。 1、集合的概念 (1)集合:某些指定的对象集在一起就形成一个集合(简称集)。 (2)元素:集合中每个对象叫做这个集合的元素。 2、常用数集及记法 (1)非负整数集(自然数集):全体非负整数的集合记作N, (2)正整数集:非负整数集内排除0的集合记作N*或N+,如 (3)整数集:全体整数的集合,记作Z , (4)有理数集:全体有理数的集合,记作Q , (5)实数集:全体实数的集合,记作R, 注:(1)自然数集与非负整数集是相同的,也就是说,自然数集包括数0。 (2)非负整数集内排除0的集。记作N*或N+ 。Q、Z、R等其它数集内排除0的集,也是这样表示,例如,整数集内排除0的集,表示成Z* 3、元素对于集合的隶属关系 (1)属于:如果a是集合A的元素,就说a属于A,记作a∈A (2)不属于:如果a不是集合A的元素,就说a不属于A,记作 4、集合中元素的特性 (1)确定性:按照明确的判断标准给定一个元素或者在这个集合里,或者不在,不能模棱两可。 (2)互异性:集合中的元素没有重复 (3)无序性:集合中的元素没有一定的顺序(通常用正常的顺序写出) 5、(1)集合通常用大写的拉丁字母表示,如A、B、C、P、Q…… 元素通常用小写的拉丁字母表示,如a、b、c、p、q…… (2)“∈”的开口方向,不能把a∈A颠倒过来写。 (二)集合的表示方法。 1、列举法:把集合中的元素一一列举出来,写在大括号内表示集合。 例如,由方程的所有解组成的集合,可以表示为{-1,1} 注:(1)有些集合亦可如下表示:从51到100的所有整数组成的集合:{51,52,53,…,100},所有正奇数组成的集合:{1,3,5,7,…} (2)a与{a}不同:a表示一个元素,{a}表示一个集合,该集合只有一个元素。 2、描述法:用确定的条件表示某些对象是否属于这个集合,并把这个条 件写在大括号内表示集合的方法 格式:{x∈A| P(x)} 含义:在集合A中满足条件P(x)的x的集合 例如,不等式的解集可以表示为:或; 所有直角三角形的集合可以表示为: 注:(1)在不致混淆的情况下,可以省去竖线及左边部分,如:{直角三角形};{大于104的实数} (2)错误表示法:{实数集};{全体实数} 3、何时用列举法?何时用描述法? (1)有些集合的公共属性不明显,难以概括,不便用描述法表示,只能用列举法。如:集合 (2)有些集合的元素不能无遗漏地一一列举出来,或者不便于、不需要一一列举出来,常用描述法。 如:集合;集合{1000以内的质数} 例 集合与集合是同一个集合吗? 答:不是。因为集合是抛物线上所有的点构成的集合,集合= 是函数的所有函数值构成的数集。 (三) 有限集与无限集 1、 有限集:含有有限个元素的集合。 2、 无限集:含有无限个元素的集合。 3、 空集:不含任何元素的集合。记作Φ,如: 三、练习题: 1、用描述法表示下列集合 ①{1,4,7,10,13} ②{-2,-4,-6,-8,-10} 2、用列举法表示下列集合 ①{x∈N|x是15的约数} {1,3,5,15} ②{(x,y)|x∈{1,2},y∈{1,2}} {(1,1),(1,2),(2,1)(2,2)} 注:防止把{(1,2)}写成{1,2}或{x=1,y=2} ③ ④ {-1,1} ⑤ {(0,8)(2,5),(4,2)} ⑥ {(1,1),(1,2),(1,4)(2,1),(2,2),(2,4),(4,1),(4,2),(4,4)} 3、关于x的方程ax+b=0,当a,b满足条件____时,解集是有限集;当a,b满足条件_____时,解集是无限集 4、用描述法表示下列集合: (1) { 1, 5, 25, 125, 625 }= (2) { 0,±, ±, ±, ±, ……}= 四、小结:本节课学习了以下内容: 1.集合的有关概念:(集合、元素、属于、不属于) 2.集合元素的性质:确定性,互异性,无序性 3.常用数集的定义及记法 4.集合的有关概念:有限集、无限集、空集 5.集合的表示方法:列举法、描述法 五、课后作业: 第 4页(共4页)
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服